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Preface to the Third Edition

The third edition of Applied Quantitative Finance moves the focus to risk
management. As a consequence, we changed the basic structure from four to three
chapters with many more contributions to market and credit risk. We revisit
important market risk issues in Chap. 1. Chapter 2 introduces novel concepts in
credit risk along with renewed quantitative methods being proposed accordingly.
A wider range of coverage in recent development of credit risk and its management
is presented in this version. The last chapter is on dynamics of risk management and
includes risk analysis of energy markets and for cryptocurrencies. Digital assets,
such as block chain-based currencies, become popular but are theoretically
challenging when based on conventional methods. A modern text mining method
called Dynamic Topic Modelling is introduced in detail and applied to the message
board of Bitcoins. A time-varying LASSO technique for tail events is at the heart of
a new financial risk meter. This third edition brings together modern risk analysis
based on quantitative methods and textual analytics for the need of the new
challenges in banking and finance.

Berlin/Giessen, Germany Wolfgang Karl Hérdle

April 2017 Cathy Yi-Hsuan Chen
Ludger Overbeck
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Part I
Market Risk



Chapter 1
VaR in High Dimensional Systems-A
Conditional Correlation Approach

H. Herwartz, B. Pedrinha and F.H.C. Raters

Abstract In empirical finance, multivariate volatility models are widely used to
capture both volatility clustering and contemporaneous correlation of asset return
vectors. In higher dimensional systems, parametric specifications often become
intractable for empirical analysis owing to large parameter spaces. On the contrary,
feasible specifications impose strong restrictions that may not be met by financial
data as, for instance, constant conditional correlation (CCC). Recently, dynamic
conditional correlation (DCC) models have been introduced as a means to solve the
trade off between model feasibility and flexibility. Here, we employ alternatively
the CCC and the DCC modeling framework to evaluate the Value-at-Risk associated
with portfolios comprising major U.S. stocks. In addition, we compare their perfor-
mances with corresponding results obtained from modeling portfolio returns directly
via univariate volatility models.

H. Herwartz - F.H.C. Raters (<)
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4 H. Herwartz et al.

1.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed on spec-
ulative markets, motivated the introduction of autoregressive conditionally het-
eroskedastic (ARCH) processes by Engle (1982) and its popular generalizations
by Bollerslev (1986) (Generalized ARCH, GARCH) and Nelson (1991) (Exponen-
tial GARCH). Being univariate in nature, however, these models neglect a further
stylized feature of empirical price variations, namely contemporaneous correlation
over a cross section of assets, stock or foreign exchange markets (Engle et al. 1990a;
Hamao et al. 1990; Hafner and Herwartz 1998; Lee and Long 2009).

The covariance between asset returns is of essential importance in finance. Effec-
tively, many problems in financial theory and practice, such as asset allocation,
hedging strategies or Value-at-Risk (VaR) evaluation, require some formalization
not merely of univariate risk measures but rather of the entire covariance matrix
(Bollerslev et al. 1988; Cecchetti et al. 1988). Similarly, pricing of options with
more than one underlying asset will require some (dynamic) forecasting scheme for
time varying variances and covariances as well (Duan 1995).

When modeling time dependent second order moments, a multivariate model is
a natural framework to take cross sectional information into account. Over recent
years, multivariate volatility models have been attracting high interest in econometric
research and practice. Popular examples of multivariate volatility models comprise
the GARCH model class recently reviewed by Bauwens et al. (2006). Numerous
versions of the multivariate GARCH (MGARCH) model suffer from huge parameter
spaces. Thus, their scope in empirical finance is limited since the dimension of vector
valued systems of asset returns should not exceed five (Ding and Engle 2001). Factor
structures (Engle et al. 1990b) and so-called correlation models (Bollerslev 1990)
have been introduced to cope with the curse of dimensionality in higher dimensional
systems. The latter start from univariate GARCH specifications to describe volatility
patterns and formalize in a second step the conditional covariances implicitly via
some model for the systems’ conditional correlations. Recently, dynamic conditional
correlation models have been put forth by Engle (2002), Engle and Sheppard (2001)
and Tse and Tsui (2002) that overcome the restrictive CCC pattern (Bollerslev 1990)
while retaining its computational feasibility.

Here, we will briefly review two competing classes of MGARCH models, namely
the half-vec model family and correlation models. The latter will be applied to eval-
uate the VaR associated with portfolios comprised by stocks listed in the Dow Jones
Industrial Average (DJIA) index. We motivate the idea for VaR backtesting and ref-
erence the recent literature on (un)conditional VaR coverage tests. We compare the
performance of models building on constant and dynamic conditional correlation.
Moreover, it is illustrated how a univariate volatility model performs in comparison
with both correlation models.

The remainder of this paper is organized as follows. The next section introduces
the MGARCH model and briefly mentions some specifications that fall within the
class of so-called half-vec MGARCH models. Correlation models are the focus
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of Sect. 1.3 where issues like estimation or inference within this model family are
discussed in some detail. In Sect. 1.4, we motivate and discuss VaR backtesting by
means of (un)conditional coverage. An empirical application of basic correlation
models to evaluate the VaR for portfolios comprising U.S. stocks is provided in
Sect. 1.5.

1.2 Half-Vec Multivariate GARCH Models

Lete, = (€14, €, - .., Ens) | denote an N-dimensional vector of serially uncorrelated
components with mean zero. The latter could be directly observed or estimated from a
multivariate regression model. The process €, follows a multivariate GARCH process
if it has the representation

& Fi—1 ~ N(O, ), % = [Uij,r]» (1.1)

where ¥, is measurable with respect to information generated up to time ¢ — 1, for-
malized by means of the filtration F,_;. The N x N conditional covariance matrix,
X, = E[E,E,TU-',,]], has typical elements o;;, with i = j (i # j) indexing condi-
tional variances (covariances). In a multivariate setting, potential dependencies of
the second order moments in X, on F;_; become easily intractable for practical

purposes.
The assumption of conditional normality in (1.1) allows to specify the likeli-
hood function for observed processes ¢;,, t = 1,2, ..., T. In empirical applications

of GARCH models, it turned out that conditional normality of speculative returns
is more an exception than the rule. Maximizing the misspecified Gaussian log-
likelihood function is justified by quasi maximum likelihood (QML) theory. Asymp-
totic theory on properties of the QML estimator in univariate GARCH models is well
developed (Bollerslev and Wooldridge 1992; Lee and Hansen 1994; Lumsdaine 1996
and a few results on consistency Jeantheau 1998) and asymptotic normality Comte
and Lieberman (2003); Ling and McAleer (2003) have been derived for multivariate
processes.

The so-called half-vec specification encompasses all MGARCH variants that are
linear in (lagged) second order moments or squares and cross products of elements
in (lagged) ¢,. Let vech(B) denote the half-vectorization operator stacking the ele-
ments of a (m x m) matrix B from the main diagonal downwards in a m(m + 1)/2
dimensional column vector. We concentrate the formalization of MGARCH models
on the MGARCH(1,1) case which is, by far, the dominating model order used in the
empirical literature (Bollerslev et al. 1994). Within the half-vec representation of the
GARCH(1, 1) model %, is specified as follows:

vech(Z,) = ¢ + A vech(g,_1¢,_,) + G vech(Z,_y). (1.2)
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In (1.2), the matrices A and G each contain {N (N + 1)/2}? elements. Deterministic
covariance components are collected in ¢, a column vector of dimension N (N +
1)/2. On the one hand, the half-vec model in (1.2) allows a very general dynamic
structure of the multivariate volatility process. On the other hand, this specification
suffers from huge dimensionality of the relevant parameter space which is of order
O(N*). In addition, it might be cumbersome or even impossible in applied work to
restrict the admissible parameter space such that the time path of implied matrices
3 is positive definite.

To reduce the dimensionality of MGARCH models, numerous avenues have been
followed that can be nested in the general class of half-vec models. Prominent exam-
ples in this vein of research are the Diagonal model (Bollerslev et al. 1988), the
BEKK model (Baba et al. 1990; Engle and Kroner 1995), the Factor GARCH (Engle
et al. 1990b), the orthogonal GARCH (OGARCH) (Alexander 1998, 2001) or the
generalized OGARCH model put forth by Van der Weide (2002). Evaluating the
merits of these proposals requires to weight model parsimony and computational
issues against the implied loss of generality. For instance, the BEKK model is con-
venient to allow for cross sectional dynamics of conditional covariances, and weak
restrictions have been formalized keeping X, positive definite over time (Engle and
Kroner 1995). Implementing the model will, however, involve simultaneous estima-
tion of O(N?) parameters such that the BEKK model has been rarely applied in
higher dimensional systems (N > 4). Factor models build upon univariate factors,
such as an observed stock market index (Engle et al. 1990b) or underlying principal
components (Alexander 1998, 2001). The latter are assumed to exhibit volatility
dynamics which are suitably modeled by univariate GARCH-type models. Thereby,
factor models drastically reduce the number of model parameters undergoing simul-
taneous estimation. Model feasibility is, however, paid with restrictive correlation
dynamics implied by the (time invariant) loading coefficients. Moreover, it is worth-
while mentioning that in case of factor specifications still O(N) parameters have to
be estimated jointly when maximizing the Gaussian (quasi) likelihood function.

1.3 Correlation Models

1.3.1 Motivation

Correlation models comprise a class of multivariate volatility models that is not
nested within the half-vec specification. Similar to factor models, correlation models
circumvent the curse of dimensionality by separating the empirical analysis in two
steps. First, univariate volatility models are employed to estimate volatility dynamics
of each asset specific return processe;;, i = 1, ..., N.Inasecond step %, is obtained
imposing some parsimonious structure on the correlation matrix (Bollerslev 1990).
Thus, in the framework of correlation models we have
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T = ViR (9) V1 (0), (1.3)

where V, = diag(\/all,,, ..., 4/ONN,) is a diagonal matrix having as typical ele-
ments the square roots of the conditional variances estimates o;; ;. The latter could
be obtained from some univariate volatility model specified with parameter vectors
0; stackedin@ = (0], ..., 0})". If univariatt GARCH(1,1) models are used for the
conditional volatilities oy; ;, 6; will contain 3 parameters such that 6 is of length 3N.
Owing to its interpretation of a correlation matrix, the diagonal elements in R(¢) are
unity (r;; = 1, i = 1, ..., N). From the general representation in (1.3) it is apparent
that alternative correlation models particularly differ with regard to the formalization
of the correlation matrix R;(¢) specified with parameter vector ¢.

In this section, we will highlight a few aspects of correlation models. First, a log-
likelihood decomposition is given that motivates the stepwise empirical analysis.
Then, two major variants of correlation models are outlined, the early CCC model
(Bollerslev 1990) and the DCC approach introduced by Engle (2002) and Engle and
Sheppard (2001). Tools for inference in correlation models that have been applied
in the empirical part of the paper are collected in an own subsection. Also, a few
remarks on recent generalizations of the basic DCC specification are provided.

1.3.2 Log-Likelihood Decomposition

The adopted separation of volatility and correlation analysis is motivated by a decom-
position of the Gaussian log-likelihood function (Engle 2002) applying to the model
in (1.1) and (1.3):

T
10, ¢) = —% [ZNlog(zw) +log (1) +e?2:1a]
=1
1 T
=—3 {ZNlog@w) + 2log(|V;]) 4 log(|R:|) +e?2,1et]
t=1
T
= > 16, ¢),
=1
10, ¢) =1 (©0) + 10, ¢), (1.4)
1Y () = —% {Nlog 27 +21og(|V,(O)]) + £, V:(0) %<} (1.5)
160, 6) = — (1og |R. ()] + v Ri() " vr — v ) - (1.6)

2



8 H. Herwartz et al.

According to (1.5) and (1.6), the maximization of the log-likelihood function may
proceed in two steps. First, univariate volatility models are used to maximize the
volatility component, [ (f), and conditional on first step estimates 0, the correlation
part I€ (0, ¢) is maximized in a second step. To perform a sequential estimation
procedure efficiently, it is required that the volatility and correlation parameters
are variation free (Engle et al. 1983) meaning that there are no cross relationships
linking single parameters in 6 and ¢ when maximizing the Gaussian log-likelihood
function. In the present case, the parameters in 6 will impact on v, = V, e, v, =
(vis, V3, - - ., Uns) |, and, thus, the condition necessary to have full information and
limited information estimation equivalent is violated. Note, however, that univariate
GARCH estimates (é) will be consistent. Thus, owing to the huge number of available
observations which is typical for empirical analyses of financial data, the efficiency
loss involved with a sequential procedure is likely to be smaller in comparison with
the gain in estimation feasibility.

1.3.3 Constant Conditional Correlation Model

Bollerslev (1990) proposes a constant conditional correlation (CCC) model

Oijt =Tij/Cii10jjt, b, j=1,...,N, i # ]. (1.7

Given positive time paths of the systems’ volatilities, positive definiteness of %; is
easily guaranteed for the CCC model (|r;;| < 1, i # j). As an additional objective of
this specification, it is important to notice that the estimation of the correlation pattern
may avoid iterative QML estimation of the {N (N — 1)/2} correlation parameters 7;;
comprising R;(¢) = R. Instead, one may generalize the idea of variance targeting
(Engle and Mezrich 1996) towards the case of correlation targeting. Then, D =
Elv, v,T ] is estimated as the unconditional covariance matrix of standardized returns,
v, = V"', and R is the correlation matrix implied by D. With'®’ denoting matrix
multiplication by element, we have formally

T
A A A A A 1 A A
_ px—1/2 *—1/2 _ T * __
R = D*'?DD*'/?, D_T;_l v, D*=D 0O Iy. (1.8)

The price paid for the feasibility of CCC is, however, the assumption of a rather
restrictive conditional correlation pattern which is likely at odds with empirical sys-
tems of speculative returns. Applying this model in practice therefore requires at
least some pretest for constant correlation (Tse 2000; Engle 2002).
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1.3.4 Dynamic Conditional Correlation Model

The dynamic conditional correlation model introduced by Engle (2002) and Engle
and Sheppard (2001) preserves the analytic separability of the models’ volatilities and
correlations, but allows a richer dynamic structure for the latter. For convenience, we
focus the representation of the DCC model again on the DCC(1,1) case formalizing
the conditional correlation matrix R, (¢) as follows:

R/(¢) = {0} ()} 20O} ()} 2 QF(9) = 0:(9) O I, (1.9)

with
0/(®) =R —a—p)+av_iv. | + B0 (¢) (1.10)

and R is a positive definite (unconditional) correlation matrix of v,.

Sufficient conditions guaranteeing positive definiteness of the time path of con-
ditional covariance matrices X, implied by (1.3), (1.9) and (1.10) are given in Engle
and Sheppard (2001). Apart from well known positivity constraints to hold for the
univariate GARCH components, the DCC(1,1) model will deliver positive definite
covariances if a > 0, 8 > 0 while « + 3 < 1 and \,,;,,, the smallest eigenvalue of
R, is strictly positive, i.e. Ayin > d > 0. It is worthwhile to point out that the DCC
framework not only preserves the separability of volatility and correlation estimation,
but also allows to estimate the nontrivial parameters in R via correlation targeting
described in (1.8).

Given consistent estimates of unconditional correlations r;;, i # j, the remaining
parameters describing the correlation dynamics are collected in the two-dimensional
vector ¢ = (a, 5) . Note that making use of correlation targeting the number of
parameters undergoing nonlinear iterative estimation in the DCC model is constant
(= 2), and, thus, avoids the curse of dimensionality even in case of very large systems
of asset returns.

Instead of estimating the model in three steps, one could alternatively estimate
the unconditional correlation parameters in R and the coefficients in ¢ jointly. Note
that the number of unknown parameters in R is O(N?). Formal representations of
first and second order derivatives to implement the two step estimation and inference
can be found in Hafner and Herwartz (2008). We prefer the three step approach here,
since it avoids iterative estimation procedures in large parameter spaces.

1.3.5 Inference in the Correlation Models

QML-inference on significance of univariate GARCH parameter estimates is dis-
cussed in Bollerslev and Wooldridge (1992). Analytical expressions necessary to
evaluate the asymptotic covariance matrix are given in Bollerslev (1986). In the
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empirical part of the chapter, we will not provide univariate GARCH parameter esti-
mates at all to economize on space. Two issues of evaluating parameter significance
remain, inference for the correlation estimates given in (1.8) and for the estimated
DCC parameters ¢. We consider these two issues in turn:

1. Inference for unconditional correlations

Conditional on estimates é we estimate R from standardized univariate GARCH
residuals as formalized in (1.8). The elements in R are obtalned as a nonlinear
and continuous transformation of the elements in D ie. R=D""DD"".
Denote with vechl(B) an operator stacking the elements below the diagonal of a
symmetric (m x m) matrix B i ina {m(@m — 1)/2} dimensional column vector b =
vechl(B). Thus, r; = Vechl(R) collects the nontrivial elements in R. Standard
errors for the estimates in 7; can be obtained from a robust estimator of the
covariance of the (nontrivial) elements in ﬁ, d= vech(ﬁ), via the delta method.
To be precise, we estimate the covariance of 7; by means of the following result

(Ruud 2000):
VTG =) 5 N (0, HOGHHT) . (1.11)

where G is an estimate of the covariance matrix of the elementsind, G = Ec;(d ),
and H(F)isa{N(N — 1)/2 x (N(N + 1)/2)} dimensional matrix collecting the
first order derivatives Or;/ dd" evaluated at d. We determine G by means of the
covariance estimator

T

1 N
g= T Z(vv),(vv)j, (vv), = vech(v,v,T) —d. (1.12)

t=1

The derivatives in H(r) are derived from a result in Hafner and Herwartz (2008)
as

or

| T . T . Ovech(D*)
8dT_PN (D* ® D*)Py + Py _(DD* ® Iy + Iy ® DD*) Py

Ovech(D)T

and

Ovech(D*) . 1 . _3p
Dvech(D)T =3 diag [Vech {(IN ® D) }] ,

where the matrices Py _ and Py serve as duplication matrices (Liitkepohl 1996)
such that (B) = Py _vechl(B) and (B) = Pyvech(B).

2. Inference for correlation parameters
The correlation parameters are estimated by maximizing the correlation part,
1€(8, ¢), of the Gaussian (quasi) log-likelihood function. When evaluating the
estimation uncertainty associated with ¢ = (&, BA)T, the sequential character of
the estimation procedure has to be taken into account. To provide standard errors
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for QML estimates , we follow a GMM approach introduced in Newey and
McFadden (1994), which works in case of sequential GMM estimation under
typical regularity conditions. In particular, it is assumed that all steps of a sequen-
tial estimation procedure are consistent. The following result on the asymptotic
behavior of 4 = (T, 7)T applies:

VTG =95 NO,N 'MWV, (1.13)

In (1.13), M is the (estimated) expectation of the outer product of the scores of
the log-likelihood function evaluated at 4,

M:li% %T %z %%T (1.14)
T = \0v/) \ov © Oy 00T 9pT ) '

Compact formal representations for the derivatives in (1.14) can be found in
Hafner and Herwartz (2008) and Bollerslev (1986). The matrix A in (1.13) has
a lower block diagonal structure containing (estimates) of expected second order

derivatives, i.e.
NH 0
N = ,
(/\/21 N

with

U 4 L ouC

1 1 PIE 1
M= 72 g0 M =7 L 06w V2 =7 L g0
=1 =1 =1

Formal representations of the latter second order quantities are provided in Hafner
and Herwartz (2008).

1.3.6 Generalizations of the DCC Model

Generalizing the basic DCC(1,1) model in (1.9) and (1.10) towards higher model
orders is straightforward and in analogy to the common GARCH volatility model.
In fact, it turns out that the DCC(1,1) model is often sufficient to capture empirical
correlation dynamics (Engle and Sheppard 2001). Tse and Tsui (2002) propose a
direct formalization of the dynamic correlation matrix R, as a weighted average of
unconditional correlation, lagged correlation and a local correlation matrix estimated
over a time window comprising the M most recent GARCH innovation vectors
&_i,i=1,...,M, M > N. As discussed so far, dynamic correlation models are
restrictive in the sense that asset specific dynamics are excluded. Hafner and Franses
(2003) discuss a generalized DCC model where the parameters v and (G in (1.10) are
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replaced by outer products of N-dimensional vectors, e.g. & = (a1, aa, ..., ay) ',
obtaining
0, =R(1—-aa" — BN +ad" ©v_v , + 55T © 0. (1.15)

From (1.15) it is apparent that implied time paths of conditional correlations show
asset specific characteristics. Similar to the generalization of the basic GARCH
volatility model towards threshold specifications (Glosten et al. 1993), one may
also introduce asymmetric dependencies of Q, on vech(v,v,") as in Cappiello et al.
(2006). A semiparametric conditional correlation model is provided by Hafner et al.
(2006). In this model, the elements in Q, are determined via local averaging where
the weights entering the nonparametric estimates depend on a univariate factor as,
for instance, market volatility or market returns.

1.4 Value-at-Risk

Financial institutions and corporations can suffer financial losses in their portfolios
or treasury department due to unpredictable and sometimes extreme movements in
the financial markets. The recent increase in volatility in financial markets and the
surge in corporate failures are driving investors, management and regulators to search
for ways to quantify and measure risk exposure. One answer came in the form of
Value-at-Risk (VaR) being the minimum loss a portfolio will not exceed with a given
probability over a specific time horizon (Jorion 2007; Christoffersen et al. 2001).
For a critical review of the VaR approach see Acerbi and Tasche (2002). They also
discuss the merits of an important and closely related risk measure, the expected
shortfall. It is defined as the expected tail return conditional on a specific VaR level
and provides further sensitive insights into the loss distribution, i.e. the expected
portfolio loss when the portfolio value exceeds the VaR.

The VaR of some portfolio (.) may be defined as a one-sided confidence interval
of expected h-periods ahead losses:

VaR(), - = E(1+ &no), (1.16)

where & ,(') is the value of a portfolio in time ¢ and §_,+h,< is a time dependent quantile

of the conditional distribution of portfolio returns ft(;:h such that

PIEY, < Encl = ¢ Ene = ornic, (1.17)

and z. is a quantile from an unconditional distribution with unit variance. In the light
of the assumption of conditional normality in (1.1), we will take the quantiles z¢
from the Gaussian distribution. As outlined in (1.16) and (1.17), the quantities f_,Jrh, ¢
and 0,4, generally depend on the portfolio composition. For convenience, however,
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our notation does not indicate this relationship. Depending on the risk averseness of
the agent, the parameter ( is typically chosen as some small probability, for instance,
¢ = 0.005, 0.01, 0.05.

In order to assess the performance of distinct VaR models in-sample and out-
of-sample, one can employ VaR backtesting methods. Several contributions in the
recent literature exploit the statistical properties of the empirical hit series. A literature
review and a comparative simulation study can be found in Campbell (2006). Given
¢, a so-called hit in time ¢ 4 & is defined by

hit 4 () =1 (&2, < VaR(, ).

The indicator function 1 becomes unity if the portfolio value falls below its computed
VaR and is zero otherwise. If the model is correctly specified the empirical hit rate,
é =1/T Zthl hit, 4, (¢), for T — oo periods converges to (. In the empirical part,
we will exploit this fact and compare the unconditional coverage of the estimated
VaR series for the discussed volatility models.

Secondly, if the model is correctly specified, the observed hits do not provide
any serial information and they are assumed to be independent. To validate the
unconditional and conditional VaR coverage, Christoffersen (1998) suggests two
likelihood ratio tests. These tests have been widely employed in the literature on
multivariate volatility (Chib et al. 2006). A similar idea on testing the conditional
coverage, Engle and Manganelli (2004) propose a dynamic quantile test assessing an
autoregressive model on the series of centered hits by a Wald test for joint significance
of the coefficients. A linear dependency of the hits in time contradicts the VaR model
specification. Ready to use software implementations for VaR backtesting are briefly
exposed in Chap.1 Appendix.

1.5 An Empirical Illustration

1.5.1 Egqual and Value Weighted Portfolios

We analyze portfolios comprised by all 30 stocks listed in the Dow Jones Industrial
Average (DJIA) over the period Jan, 2nd, 1990 to Jan, 31st, 2005. The asset returns
were computed using historical closing prices provided by Yahoo Finance. Measured
at the daily frequency, 3803 observations are used for the empirical analysis. Two
alternative portfolio compositions are considered. In the first place, we analyze a
portfolio weighting each asset equally. Returns of this equal weight portfolio (EWP)
are obtained from asset specific returns (¢;;, i = 1,..., N) as

(e) Zw(e)sm l(te) — N1
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Secondly, we consider value weighted portfolios (VWP) determined as:

& = ZW(U)Em wiy = wie 1 (1 +ei-0)/wi”, w” Zw,t 1(1+&i1).

Complementary to an analysis of EWP and VWP, dynamics of minimum variance
portfolios (MVP) could also be of interest. The MVP, however, will typically depend
on some measure of the assets’ volatilities and covariances. The latter, in turn, depend
on the particular volatility model used for the analysis. Since the comparison of alter-
native measures of volatility in determining VaR is akey issue of this investigation, we
will not consider MVP to immunize our empirical results from impacts of volatility
specific portfolio compositions.

Our empirical comparison of alternative approaches to implement VaR concen-
trates on the relative performance of one step ahead ex-ante evaluations of VaR
(h = 1). Note, that the (M)GARCH model specifies covariance matrices X, or uni-
variate volatilities o> conditional on F,_;. Therefore, we practically consider the
issue of two step ahead forecasting when specifying

VaR(?), |Fioy = VaRV(57, ). 6741 Fio1 = ELE ) |1 Fil.

The performance of alternative approaches to forecast VaR is assessed by means of
the relative frequency of actual hits observed over the entire sample period, i.e.

3802

1 _
hfY = —— > 1(¢” 1.1
¢ 380(); & < &0, (1.18)

where 1(.) is an indicator function. To determine the forecasted conditional standard
deviation entering the VaR, we adopt three alternative strategies. As a benchmark, we
consider standard deviation forecasts obtained from univariate GARCH processes
fitted directly to the series of portfolio returns 5,(‘) . For the two remaining strategies, we
exploit forecasts of the covariance matrix, EAIHI =F [E,+1€;r+1 |.7-",_1], to determine
VaR. Note that given portfolio weights w, = (wl,, Wy ..., Whe) T, the expected
conditional variance of the portfolio is 62 =W E,+1 w. Feas1ble estimates for the
expected covariance matrix are determined alternatively by means of the CCC and
DCC model.

The empirical exercises first cover a joint analysis of all assets comprising the
DIJIA. Moreover, we consider 1000 portfolios composed of 5 securities randomly
drawn from all assets listed in the DJIA. Implementing the volatility parts of both the
CCC and the DCC model, we employ alternatively the symmetric GARCH(1,1) and
the threshold GARCH(1,1) model as introduced by Glosten et al. (1993). Opposite
to the symmetric GARCH model, the latter accounts for a potential leverage effect
(Black 1976) stating that volatility is larger in the sequel of bad news (negative
returns) in comparison with good news (positive returns).
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Table 1.1 Estimation results and performance of VaR estimates. G and TG are short for
GARCH(1,1) and TGARCH(1,1) models for asset specific volatilities, respectively. D, C and U
indicate empirical results obtained from DCC, CCC and univariate GARCH(1,1) models applied
to evaluate forecasts of conditional variances of equal weight (EWP) and value weighted portfolios
(VWP). Entries in hf and s(hf) are relative frequencies of extreme losses and corresponding standard
errors, respectively

¢ - 1000 N =30 N=5
G TG G TG
hf hf hf ' s(hf) hf ' s(hf)
EWP
D 5.00 8.15 7.36 7.56 .033 7.13 .034
10.0 13.2 12.4 11.7 .041 11.2 .042
50.0 41.6 41.8 40.4 .075 40.3 .078
C 5.00 10.8 9.73 7.78 .034 7.36 .035
10.0 14.2 14.2 11.9 .040 11.5 .042
50.0 42.6 41.8 40.8 .074 40.7 .077
U 5.00 11.6 11.6 8.70 .036 8.36 .037
10.0 14.7 14.7 13.2 .045 12.9 .045
50.0 47.3 47.3 43.5 .076 44.0 .077
VWP
D 5.00 6.58 7.10 7.86 .033 7.55 .033
10.0 12.9 11.8 11.9 .043 11.6 .041
50.0 41.6 40.5 40.3 .076 40.4 .078
C 5.00 9.21 9.21 8.18 .036 7.90 .035
10.0 14.5 134 12.3 .043 12.1 .043
50.0 42.6 41.8 41.1 .072 41.3 .071
U 5.00 9.99 9.99 8.71 .037 8.62 .035
10.0 15.5 15.5 13.0 .048 12.9 .048
50.0 43.7 43.7 42.6 .095 432 .098
Estimation results
D a 2.8e-03 2.8e-03 6.6e-03 4.5e-05 6.7e-03 4.8e-05
to 17.5 17.3
15 992 992 989 8.3e-05 .989 9.5e-05
tg 1.8e+03 1.8e+03

1.5.2 Estimation Results

A few selected estimation results are given in Table 1.1. Since we investigate 30 assets
or 1000 random portfolios each containing N = 5 securities, we refrain from provid-
ing detailed results on univariate GARCH(1,1) or TGARCH(1,1) estimates. More-
over, we leave estimates of the unconditional correlation matrix R undocumented
since the number of possible correlations in our sample is N(N — 1)/2 = 435.
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Fig. 1.1 Returns, conditional volatilities and correlations for Verizon and SBC communications

The lower left part of Table 1.1 provides estimates of the DCC parameters o and
[ and corresponding ¢-ratios for the analysis of all assets comprising the DJIA.
Although the estimated o parameter governing the impact of lagged GARCH inno-
vations on the conditional correlation matrix is very small (around 2.8-10~2 for both
implementations of the DCC model), it is significant at any reasonable significance
level. The relative performance of the CCC and DCC model may also be evaluated
in terms of the models’ log-likelihood difference. Using symmetric and asymmet-
ric volatility models for the diagonal elements of X, the log-likelihood difference
between DCC and CCC is 645.66 and 622.00, respectively. Since the DCC spec-
ification has only two additional parameters, it apparently provides a substantial
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improvement of fitting multivariate returns. It is also instructive to compare, for
the DCC case say, the log-likelihood improvement achieved when employing uni-
variate TGARCH instead of a symmetric GARCH. Interestingly, implementing the
DCC model with asymmetric GARCH the improvement of the log-likelihood is only
236.27, which is to be related to the number of N = 30 additional model parame-
ters. Reviewing the latter two results, one may conclude that dynamic correlation is
a more striking feature of U.S. stock market returns than leverage.

The sum of both DCC parameter estimates, & + B, is slightly below unity and,
thus, the estimated model of dynamic covariances is stationary. The lower right part of
Table 1.1 gives average estimates obtained for the DCC parameters when modeling
1000 portfolios randomly composed of five securities contained in the DJIA. We
also provide an estimator of the empirical standard error associated with the latter
average. [rrespective of using a symmetric or asymmetric specification of univariate
volatility models, estimates for o are small throughout. According to the reported
standard error estimates, however, the true o parameter is apparently different from
zero at any reasonable significance level.

The maximum over all 435 unconditional correlations is obtained for two firms
operating on the telecommunication market, namely Verizon Communications and
SBC Communications. To illustrate the performance of the DCC model and compare
it with the more restrictive CCC counterpart, Fig. 1.1 provides the return processes
for these two assets, the corresponding time paths of conditional standard deviations
as implied by TGARCH(1,1) models and the estimated time paths of conditional
correlations implied by the DCC model fitted over all assets contained in the DJTA.
Facilitating the interpretation of the results, we also give the level of unconditional
correlation.

Apparently, the univariate volatility models provide accurate descriptions of the
return variability for both assets. Not surprisingly, estimated volatility turns out to
be larger over the last third of the sample period in comparison with the first half.
Although conditional correlation estimates vary around their unconditional level,
the time path of correlation estimates exhibits only rather slow mean reversion.
Interestingly, over the last part of the sample period, the conditional correlation
measured between Verizon and SBC increases with the volatilities of both securities.

As mentioned, Verizon and SBC provide the largest measure of unconditional
correlation within the DJIA over the considered sample period. To illustrate that
time varying conditional correlation with slow mean reversion is also an issue for
bivariate returns exhibiting medium or small correlation, we provide the conditional
correlation estimates for Verizon and General Electric (medium unconditional cor-
relation) and Verizon and Boeing (small unconditional correlation) in Fig. 1.2. For
completeness, Fig. 1.3 provides empirical return processes for General Electric and
Boeing.

The upper part of Table 1.1 shows relative frequencies of realized losses exceeding
the one step ahead ex-ante VaR forecasts. We provide average relative frequencies
when summarizing the outcome for 1000 portfolios with random composition. To
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Fig. 1.2 Conditional volatilities for General Electric and Boeing and conditional correlations with
Verizon

facilitate the discussion of the latter results, all frequencies given are multiplied with
a factor of 1000.

The relative frequency of empirical hits of dynamic VaR estimates at the 5% level
is uniformly below the nominal probability, indicating that dynamic VaR estimates
are too conservative on average. For the remaining probability levels ( = 0.5% and
¢ = 1%, the empirical frequencies of hitting the VaR exceed the nominal probability.
We concentrate the discussion of empirical results on the latter cases. With regard to
the performance of alternative implementations of VaR it is worthwhile to mention
that the basic results are qualitatively similar for EWP in comparison with VWP.
Similarly, employing an asymmetric GARCH model instead of symmetric GARCH
has only minor impacts on the model comparison between the univariate benchmark
and the CCC and DCC model, respectively. For the latter reason, we focus our discus-
sion of the relative model performance on VaR modeling for EWP with symmetric
GARCH(1,1) applied to estimate conditional variances.
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Fig. 1.3 Returns for General Electric and Boeing

Regarding portfolios composed of 30 securities, it turns out that for both probabil-
ity levels, ¢ = 1% and ¢ = 0.5%, the empirical frequencies of hitting the dynamic
VaR estimates are closest to the nominal level for the DCC model and worst for
modeling portfolio returns directly via univariate GARCH. Although it provides the
best empirical frequencies of hitting the VaR, the DCC model still underestimates
(in absolute value) on average the true quantile. For instance, the 0.5% VaR shows an
empirical hit frequency of 0.82% (EWP) and 0.66% (VWP), respectively. Drawing
randomly 5 out of 30 assets to form portfolios, and regarding the average empirical
frequencies of hitting the VaR estimates, we obtain almost analogous results in com-
parison with the case N = 30. The reported standard errors of average frequencies,
however, indicate that the discussed differences of nominal and empirical proba-
bilities are significant at a 5% significance level since the difference between both
exceeds twice the standard error estimates.

In summary, using the CCC and DCC model and, alternatively, univariate GARCH
specifications to determine VaR, it turns out that the former outperform the univariate
GARCH as empirical loss frequencies are closer to the nominal VaR coverage. DCC
based VaR estimates in turn outperform corresponding quantities derived under the
CCC assumption. Empirical frequencies of large losses, however, exceed the corre-
sponding nominal levels if the latter are rather small, i.e. 0.5 and 1%. This might
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indicate that the DCC framework is likely to restrictive to hold homogeneously over
a sample period of the length (more than 15 years) considered in this work. More
general versions of dynamic correlation models are available but allowance of asset
specific dynamics requires simultaneous estimation of O(N) parameters.

Appendix: Software Packages

Various numerical programming environments provide built-in or third-party meth-
ods for analyzing conditional correlation models and Value-at-Risk backtesting tools.
In this section, we briefly point out distinct implementations for the programming
languages R, MATLAB and Stata.

Regarding the R Project, the package rmgarch (Ghalanos 2015) is suitable
for modeling and analyzing the conditional correlation models, such as CCC and
DCC. Its comprehensive function set supports the analysis of further multivariate
volatility models, such as, for instance, the generalized orthogonal GARCH model by
Van der Weide (2002). The package offers a sophisticated design of functions, time-
critical procedures are partly implemented in C/C++ and various time series statistics
are computed. The code is based on the package rugarch by the same author which
can be used to study univariate volatility models in a similar sophisticated way. In
addition, the latter package includes an implementation of the unconditional and
conditional coverage VaR tests according to Christoffersen (1998). As an alternative,
the package ccgarch Nakatani (2014) might be used for the evaluation of CCC and
DCC models. Its functions were used to compute estimates and statistics quickly and
correctly in several test applications. In comparison with rmgarch, its design and
capabilities are less complex and it is restricted to conditional correlation models.
Currently, there are no efforts by the authors of both packages to support the BEKK
model.

Working with MATLAB, MathWorks’” Econometrics Toolbox supports the sim-
ulation, estimation, and forecasting of different variants of univariate GARCH-type
models. Its Risk Management Toolbox comprises an entire set of functions for assess-
ing market risk, i.e. implementations of common approaches for VaR backtesting,
which include the (un)conditional coverage tests described before. However, evalu-
ations of multivariate volatility models including CCC or DCC can be carried out by
means of the non-official MFE Toolbox. ! Itis the successor of the UCSD Toolbox by
Kevin Sheppard. > The MFE project implements various univariate and multivariate
volatility models and metrics. Its open source codebase is maintained and augmented
by volunteers and particularly well suited as a starting point to study the program-
ming of multivariate time series algorithms. Despite its wide range of functions, the
user should always critically question the numerical results because the MFE project
is still under development.

IProject website: https://www.kevinsheppard.com/MFE_Toolbox.
ZProject website: https://www.kevinsheppard.com/UCSD_GARCH.
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The Stata software package provides the user with comfortable fitting algorithms
for conditional correlation models and diagonal half-vec models by means of the
functionmgarch. Its optimized program code proceeds rapidly and, at the same time,
computes common metrics. The Stata documentation of the implemented methods
is exemplary and might be a good complement while studying publicly available
code examples of the volatility model implementations which are investigated in this
chapter.
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Chapter 2
Multivariate Volatility Models

M.R. Fengler, H. Herwartz and F.H.C. Raters

Abstract Multivariate volatility models are widely used in finance to capture both
volatility clustering and contemporaneous correlation of asset return vectors. Here,
we focus on multivariate GARCH models. In this common model class, it is assumed
that the covariance of the error distribution follows a time dependent process condi-
tional on information which is generated by the history of the process. To provide
a particular example, we consider a system of exchange rates of two currencies
measured against the US Dollar (USD), namely the Deutsche Mark (DEM) and the
British Pound Sterling (GBP). For this process, we compare the dynamic properties
of the bivariate model with univariate GARCH specifications where cross sectional
dependencies are ignored. Moreover, we illustrate the scope of the bivariate model
by ex-ante forecasts of bivariate exchange rate densities.

2.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed on spec-
ulative markets, motivated the introduction of autoregressive conditionally het-
eroskedastic (ARCH) processes by Engle (1982) and its popular generalizations
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by Bollerslev (1986) (Generalized ARCH, GARCH) and Nelson (1991) (exponen-
tial GARCH, EGARCH). Being univariate in nature, however, such models neglect
a further stylized fact of empirical price variations, namely contemporaneous cross
correlation e.g. over a set of assets, stock market indices, or exchange rates.

Cross section relationships are often implied by economic theory. Interest rate
parities, for instance, provide a close relation between domestic and foreign bond
rates. Assuming absence of arbitrage, the so-called triangular equation formalizes the
equality of an exchange rate between two currencies on the one hand and an implied
rate constructed via exchange rates measured towards a third currency. Furthermore,
stock prices of firms acting on the same market often show similar patterns in the
sequel of news that are important for the entire market (Hafner and Herwartz 1998).
Similarly, analyzing global volatility transmission Engle et al. (1990) and Hamao
et al.(1990) found evidence in favor of volatility spillovers between the world’s
major trading areas occurring in the sequel of floor trading hours. From this point
of view, when modeling time varying volatilities, a multivariate model appears to be
a natural framework to take cross sectional information into account. Moreover, the
covariance between financial assets is of essential importance in finance. Effectively,
many problems in financial practice like portfolio optimization, hedging strategies,
or Value-at-Risk evaluation require multivariate volatility measures (Bollerslev et al.
1988; Cecchetti et al. 1988).

2.1.1 Model Specifications

Lete, = (€11, €2, ..., €ny) | denote an N-dimensional error process, which is either
directly observed or estimated from a multivariate regression model. The process &,
follows a multivariate GARCH process if it has the representation

e =3¢, 2.1)

where X, is measurable with respect to information generated up to time ¢ — 1,
denoted by the filtration F,_;. By assumption, the N components of & follow a
multivariate Gaussian distribution with mean zero and a covariance matrix equal to
the identity matrix.

The conditional covariance matrix, X, = E[s,etTU-',,l], has typical elements o0;;
with 0;;, i = 1,..., N, denoting conditional variances and off-diagonal elements
oij, i, j=1,...,N, i # j,denoting conditional covariances. To make the specifi-
cation in (2.1) feasible, a parametric description relating X, to F;_ is necessary. In
a multivariate setting, however, dependencies of the second order moments in ¥, on
Fi—1 become easily computationally intractable for practical purposes.

Let vech(A) denote the half-vectorization operator stacking the elements of a
quadratic (N x N)-matrix A from the main diagonal downwards in a %N (N+1)
dimensional column vector. Within the so-called half-vec representation of the
GARCH(p, g) model % is specified as follows:
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q p
vech(Z,) = ¢ + Z A;vech(e,_je| ) + Z Givech(Z,_)). (2.2)

i=1 i=1

In (2.2), the matrices A; and G; each contain {N(N + 1)/2}? elements. Deterministic
covariance components are collected in ¢, a column vector of dimension N(N +
1)/2. We consider in the following the case p = ¢ = 1 since in applied work the
GARCH(1,1) model has turned out to be particularly useful to describe a wide variety
of financial market data (Bollerslev et al., 1994).

On the one hand, the half-vec model in (2.2) allows for a very general dynamic
structure of the multivariate volatility process. On the other hand, this specification
suffers from high dimensionality of the relevant parameter space, which makes it
almost intractable for empirical work. In addition, it might be cumbersome in applied
work to restrict the admissible parameter space such that the implied matrices %;, t =
1,..., T, are positive definite. These issues motivated a considerable variety of
competing multivariate GARCH specifications.

Prominent proposals reducing the dimensionality of (2.2) are the constant corre-
lation model (Bollerslev et al. 1988) and the diagonal model (Bollerslev et al. 1988).
Specifying diagonal elements of X, both of these approaches assume the absence of
cross equation dynamics, i.e. the only dynamics are

Oiit = Cij +ai€i;_1 + gioiig—1, i =1,..., N. (2.3)

To determine off-diagonal elements of %,, Bollerslev (1990) proposes a constant
contemporaneous correlation,

Oiji = Pij/0ii0jj, I, j=1,...,N, (2.4)

whereas Bollerslev et al. (1988) introduce an ARMA-type dynamic structure as in
(2.3) for 0y;,, as well, i.e.

Oiji = Cij +Qij€i1—1€j1—1 + GijTiji—1, L, j=1,..., N. (2.5)

For the bivariate case (N = 2) with p = g = 1, the constant correlation model con-
tains only 7 parameters compared to 21 parameters encountered in the full model
(2.2). The diagonal model is specified with 9 parameters. The price that both models
pay for parsimony is in ruling out cross equation dynamics as allowed in the general
half-vec model. Positive definiteness of X, is easily guaranteed for the constant cor-
relation model (|p;;| < 1), whereas the diagonal model requires more complicated
restrictions to provide positive definite covariance matrices.

The so-called BEKK model (Baba et al. 1990) provides a richer dynamic structure
compared to both restricted processes mentioned before. Defining N x N matrices
Ajx and G and an upper triangular matrix Co, the BEKK model reads in a general
version as follows (see Engle and Kroner 1995):
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K p
2,—COCO+ZZA,ks, & At DD GiZi G (2.6)

k=1 i=1 k=1 i=1

IfK =g =p=1and N = 2, the model in (2.6) contains 11 parameters and implies
the following dynamic model for typical elements of %;:

o1, =C1 +61121€%’,_1 + 2ay1a21€1 1-1€2,1—1 +a§1€%’,_1
+ gH011,—1 + 2911921021 -1 + §3,022.-1,

021, = €21 + a116122€%,t,1 + (az1a12 + anaxn)er—1€2,-1 + azmzzﬁg,,,l
+ 911922011,-1 + (921912 + 911922)T 12,01 + §21922022,1 15

004 =+ aher _y + 2a12a081-1824-1 + AHes,_

2 2
+ 912011,i—1 + 2912922021 1—1 + 95022,1—1-

Compared to the diagonal model, the BEKK-specification economizes on the number
of parameters by restricting the half-vec model within and across equations. Since
Aj; and Gj; are not required to be diagonal, the BEKK model is convenient to
allow for cross dynamics of conditional covariances. The parameter K governs to
which extent the general representation in (2.2) can be approximated by a BEKK-
type model. In the following we assume K = 1. Note that in the bivariate case with
K = p = g = 1 the BEKK model contains 11 parameters. If K = 1, the matrices
Aj; and — A imply the same conditional covariances. Thus, for uniqueness of the
BEKK-representation a;; > 0 and g;; > 0 is assumed. Note that the right hand side
of (2.6) involves only quadratic terms and, hence, given convenient initial conditions,
%, is positive definite under the weak (sufficient) condition that at least one of the
matrices Cy or G has full rank (Engle and Kroner 1995). It is worthwhile to mention
that in a similar way the univariate GARCH volatility model can be augmented by
threshold specifications (Glosten et al. 1993), a generalization for asymmetric effects
in a BEKK-type model is discussed in Kroner and Ng (1998).

2.1.2 Estimation of the BEKK Model

As in the univariate case, the parameters of a multivariate GARCH model are
estimated by maximum likelihood (ML) optimizing numerically the Gaussian log-
likelihood function.

With f denoting the multivariate normal density, the contribution of a single
observation, /;, to the log-likelihood of a sample is given as:

I, = In{f (| Fre1)}
N 1 1
=~ In@m) — S (%) - 5/ T e
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Maximizing the log-likelihood, I = Zthl l;, requires nonlinear maximization meth-
ods. Involving only first order derivatives, the BHHH algorithm introduced by Berndt
etal. (1974) is easily implemented and particularly useful for the estimation of mul-
tivariate GARCH processes.

If the actual error distribution differs from the multivariate normal, maximizing
the Gaussian log-likelihood has become popular as Quasi ML (QML) estimation.
In the multivariate framework, results for the asymptotic properties of the (Q)ML-
estimator have been derived by Jeantheau (1998) who proves the QML-estimator to
be consistent under the main assumption that the considered multivariate process is
strictly stationary and ergodic. Further assuming finiteness of moments of ¢, up to
order eight, Comte and Lieberman (2003) derive asymptotic normality of the QML-
estimator. The asymptotic distribution of the rescaled QML-estimator is analogous
to the univariate case and discussed in Bollerslev and Wooldridge (1992).

2.2 An Empirical Illustration

2.2.1 Data Description

We analyze daily quotes of two European currencies measured against the USD,
namely the DEM and the GBP. The sample period is December 31, 1979 to April
1, 1994, covering T = 3720 observations. Note that a subperiod of our sample has
already been investigated by Bollerslev and Engle (1993) discussing common fea-
tures of volatility processes.

Let the bivariate vector R, denote the exchange rates (DEM/USD and GBP/USD)
attime ¢. Before inspecting the sample statistics (@XFGmvol01 . R), we take the first
differences of the log exchange rates, ¢, = In(R;) — In(R;_;). These log-differences
are shown in Fig.2.1. Evidently, the empirical means of both processes are very
close to zero (—4.72e-06 and 1.10e-04, respectively). Also minimum, maximum
and standard errors are of similar size. As is apparent from Fig.2.1, variations of
exchange rate log-differences exhibit an autoregressive pattern: Large log-differences
of foreign exchange rates are followed by large log-differences of either sign. This
is most obvious in periods of excessive log-differences. Note that these volatility
clusters tend to coincide in both series. It is precisely this observation that justifies a
multivariate GARCH specification.

2.2.2 Estimating Bivariate GARCH

A fast algorithm is used to estimate the BEKK representation of a bivariate GARCH
(1,1) model: QML-estimation is implemented by means of the BHHH-algorithm
which minimizes the negative Gaussian log-likelihood function. The algorithm
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Fig. 2.1 Foreign exchange rate data: log-differences. @ XFGmvol01

employs analytical first order derivatives of the log-likelihood function
Liitkepohl (1996) with respect to the 11-dimensional vector of parameters contain-
ing the elements of Cy, Aj; and G ; as given in (2.6). Alternatively, the R package
mgarchBEKK Schmidbauer et al. (2016) might be considered when estimating this
model in R. Section 2.3 contains further references for implementations of the BEKK
model in widely used numerical programming environments.

The estimation output contains the stacked elements of the parameter matrices
Co, A1y and Gy in (2.6) after numerical optimization of the Gaussian log-likelihood
function. Being an iterative procedure, the algorithm requires to determine suitable
initial parameters. For the diagonal elements of the matrices Aj; and G values
around 0.3 and 0.9 appear reasonable, since in univariate GARCH(1,1) models para-
meter estimates for a; and g; in (2.3) often take values around 0.3 = 0.09 and
0.81 = 0.92. There is no clear guidance how to determine initial values for off diag-
onal elements of Aj; or Gy;. Therefore, it might be reasonable to try alternative
initializations of these parameters. Given an initialization of A; and Gy, the start-
ing values for the elements in C are determined by the algorithm assuming the
unconditional covariance of ¢, to exist (Engle and Kroner 1995).
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Given our example under investigation, the bivariate GARCH estimation yields
a vector of coefficient estimates,

0 = (.00115, .00031, .00076, .2819, —.0572, —.0504, .2934, .9389, .0251,.0275, .9391),

and a corresponding log-likelihood value [ = 28599 at the optimum. The first three
estimates are the parameters of the upper triangular matrix Cy, the following four
belong to the ARCH (A1) and the last four to the GARCH parameters (G;), i.e. for
our model,
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Fig. 2.2 Estimated variance and covariance processes, 10 3.8 XFGmvol02
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Fig. 2.3 Slmulated variance and covariance processes, both bivariate (blue) and univariate case
(green), 1053 Y. @ XFGmvol03

X = COTCO + A;r16z—1€;r_1A11 + G|, %Gy, 2.7
stated again for convenience, we find the matrices Cy, A}, G to be:

11531 _( 282 —.050 _ (939 .028
Co=10 (0 76) A= 057 203) G = loas 939

(2.8)
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2.2.3 Estimating the (co)variance Processes

The (co)variance is obtained by sequentially calculating the difference equation
(2.7) where we use the estimator for the unconditional covariance matrix as ini-
tial value (X9 = #). Here, the T x 2 matrix E contains log-differences of our
foreign exchange rate data.

We display the estimated variance and covariance processes in Fig. 2.2. The quant-
let @XFGmvol02 . R ss contains the code. The two upper panels of Fig.2.2 show
the variances of the DEM/USD and GBP/USD log-differences respectively, whereas
in the lower panel we see the covariance process. Except for a very short period in
the beginning of our sample, the covariance is positive and of non-negligible size
throughout. This is evidence for cross sectional dependencies in currency markets
which we mentioned earlier to motivate multivariate GARCH models.

Instead of estimating the realized path of variances as shown above, we could
also use the estimated parameters to simulate volatility paths (@XFGmvol03.R).
For this, at each point in time an observation ¢; is drawn from a multivariate normal
distribution with variance ¥,. Given these observations, ¥, is updated according to
(2.7). Then, a new residual is drawn with covariance X, ;. We apply this procedure
for T = 3000. The results, displayed in the three panels of Fig.2.3, show a similar
pattern as the original process given in Fig. 2.2. For the upper two panels, we generate
two variance processes from the same set of simulated residuals ;. In this case,
however, we set off-diagonal parameters in C(-)r Co, Aj1 and Gy to zero to illustrate
how the unrestricted BEKK model incorporates cross equation dynamics. As can
be seen, both approaches are convenient to capture volatility clustering. Depending
on the particular state of the system, spillover effects operating through conditional
covariances, however, have a considerable impact on the magnitude of conditional
volatility.

2.3 Forecasting Exchange Rate Densities

The preceding section illustrated how the GARCH model may be employed effec-
tively to describe empirical price variations of foreign exchange rates. For practi-
cal purposes, as for instance scenario analysis, Value-at-Risk estimation (Chap. 1),
option pricing (see the corresponding chapter), one is often interested in the future
joint density of a set of asset prices. Continuing the comparison of the univariate and
bivariate approach to model volatility dynamics of exchange rates, it is thus natural to
investigate the properties of these specifications in terms of forecasting performance.

We implement an iterative forecasting scheme along the following lines: Given the
estimated univariate and bivariate volatility models and the corresponding informa-
tionsets F;_1,t = 1,..., T — 5 (Fig.2.2), we employ the identified data generating
processes to simulate one-week-ahead forecasts of both exchange rates. To get a reli-
able estimate of the future density, we set the number of simulations to 5000 for each
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initial scenario. This procedure yields two bivariate samples of future exchange rates,
one simulated under bivariate, the other one simulated under univariate GARCH
assumptions.

A review of evaluating competing density forecasts is offered by Tay and Wallis
(2000). Adopting a Bayesian perspective the common approach is to compare the
expected loss of actions evaluated under alternative density forecasts. In our pure time
series framework, however, a particular action is hardly available for forecast density
comparisons. Alternatively, one could concentrate on statistics directly derived from
the simulated densities, such as first and second order moments or even quantiles.
Due to the multivariate nature of the time series under consideration, it is a nontrivial
issue to rank alternative density forecasts in terms of these statistics. Therefore,
we regard a particular volatility model to be superior to another if it provides a
higher simulated density estimate of the actual bivariate future exchange rate. This
is accomplished by evaluating both densities at the actually realized exchange rate
obtained from a bivariate kernel estimation. Since the latter comparison might suffer
from different unconditional variances under univariate and multivariate volatility,
the two simulated densities were rescaled to have identical variance. Performing
the latter forecasting exercises iteratively over 3714 time points, we can test if the
bivariate volatility model outperforms the univariate one.

To formalize the latter ideas, we define a success ratio SR as

1 A A
SR, = 7l Y fpiv(Rits) > funi (Riys)}, (2.9)
teJ

where J denotes a time window containing |J | observations and 1 an indicator func-
tion. fb,-v(R,Jrs) and f,m (R,+5) are the estimated densities of future exchange rates
which are simulated by the bivariate and univariate GARCH processes, respectively,
and which are evaluated at the actual exchange rate levels R, 5. The simulations are
performed in @XFGmvol04.

Our results show that the bivariate model indeed outperforms the univariate one
when both likelihoods are compared under the actual realizations of the exchange
rate process. In 82.3% of all cases across the sample period, SR; = 0.823, J =
{t:t=1,...,T — 5}, the bivariate model provides a better forecast. This is highly
significant. In Table 2.1, we show that the overall superiority of the bivariate volatility

Table 2.1 Time varying

. T Time window J Success ratio SR

frequencies of the bivariate
GARCH model 1980 1981 0.762
outperforming the univariate 1982 1983 0.786
one in terms of 1984 1985 0.868
one-week-ahead forecasts 1986 1987 0.780
(success ratio)

1988 1989 0.872

1990 1991 0.835

1992 04/1994 0.854
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Covariance and success ratio
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Fig.2.4 Estimated covariance process from the bivariate GARCH model (104 012, blue) and success
ratio over overlapping time intervals with window length 80 days (red). @ XFGmvol04

approach is confirmed when considering subsamples of two-years length. A-priori,
one may expect the bivariate model to outperform the univariate one the larger (in
absolute value) the covariance between both log-difference processes is. To verify
this argument, we display in Fig. 2.4 the empirical covariance estimates from Fig. 2.2
jointly with the success ratio evaluated over overlapping time intervals of length
|J| = 80.

As is apparent from Fig.2.4, there is a close co-movement between the success
ratio and the general trend of the covariance process, which confirms our expecta-
tions: the forecasting power of the bivariate GARCH model is particularly strong in
periods where the DEM/USD and GBP/USD exchange rate log-differences exhibit
a high covariance. For completeness, it is worthwhile to mention that similar results
are obtained if the window width is varied over reasonable choices of |J| ranging
from 40 to 150.

With respect to financial practice and research we take our results as strong support
for a multivariate approach towards asset price modeling. Whenever contemporane-
ous correlation across markets matters, the system approach offers essential advan-
tages. To name a few areas of interest, multivariate volatility models are supposed to
yield useful insights for risk management, scenario analysis and option pricing.
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Appendix: Software Packages

This section gives a brief overview of BEKK model implementations for the numer-
ical programming languages and environments R, MATLAB and Stata. Built-in
functions and external packages for estimating univariate and further multivariate
volatility models are briefly reviewed in Chap. 1 Appendix.

There exist two publicly available R packages which attempt to implement the
BEKK approach. Both implementations are in early stages and, therefore, com-
puted results need to be critically reviewed by the user. The package mgarchBEKK
Schmidbauer et al. (2016) might be used for simulating, estimating and predicting
BEKK models. The estimation of simulated data returns plausible results. In contrast,
the package MTS by Tsay (2015) contains a single function BEKK11 for estimating
two- or three-dimensional BEKK(1,1) models only.

MATLAB offers methods to assess univariate GARCH-type models by means
of its Econometrics Toolbox. However, there is no official MATLAB Toolbox that
implements the BEKK model. As described in Chap. 1 Appendix, the MFE Toolbox
tries to fill the gap of assessing of multivariate volatility models in MATLAB. It is the
direct successor to the UCSD Toolbox by Kevin Sheppard which is not being further
developed. The codebase might help getting insights into the technical details of
the BEKK approach. Because the toolbox is still under development, an optimized,
error-free use can not be guaranteed.

Currently, Stata supports only the analysis of univariate volatility models, diag-
onal half-vec models, which are restricted versions of the half-vec model in (2.2),
and conditional correlation models. It seems that there exists no publicly available
extension to estimate a BEKK model. As an alternative, users might employ the tools
of the independent software package JMulTi,! which is closely related to Liitkepohl
and Kritzig (2004), for BEKK model estimation and investigation in combination
with Stata.
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Chapter 3
Portfolio Selection with Spectral Risk
Measures

S.F. Huang, H.C. Lin and T.Y. Lin

Abstract In this chapter, a portfolio selection problem with spectral risk measure is
considered. The spectral risk measure is a general family of coherent risk measures
and is capable of reflecting investor’s risk preference. A multivariate conditional
heteroscedastic model with vine copulae is employed to describe the dynamics and
dependence of the underlying asset returns. The technique of linear programming
is used to accurately and quickly determine the optimal asset allocations. Simu-
lation studies are conducted for investigating the impacts of the magnitude of tail
dependence among the underlying assets and the degrees of risk aversion on the per-
formance of the optimal portfolio. An empirical study is conducted by using the stock
prices included in the FTSE TWSE Taiwan 100 Index. Numerical results indicate
that the optimal portfolios have different reactions to different economic situations.

3.1 Introduction

In modern portfolio selection theory, the mean-variance (MV) portfolio optimization
procedure introduced by Markowitz (1952; 1959) plays a crucial role in optimal asset
allocations and investment diversification. In the MV procedure, investors attempt
to maximize their portfolio expected return for a given level of portfolio risk, or
equivalently to minimize the risk of investment with achieving a given amount of
expected return, by determining the investment proportions of various securities
(Markowitz 1952, 1959, 1991; Merton 1972; Kroll et al. 1984). The traditional MV
portfolio problem uses standard deviation as the measure of risk and assumes that the
returns of the underlying assets are independent and identically distributed (i.i.d.).
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Recently many other risk measures are more commonly used by traders in reality,
for example, the value-at-risk (VaR), the expected shortfall risk (ES) and a general
class of coherent risk measures, called the spectral risk measure (SRM). Thus, the
optimal portfolio selection problem with risk constraints rather than standard devia-
tion attracts more attention for practical implementation (Acerbi and Simonetti 2002;
Krokhmal et al. 2002; Chabaane et al. 2006; Huang and Lin 2017). Consequently,
assessing the impact regarding the selection of different risk measures on portfolio
allocation is of particular importance for asset managers.

When returns are Gaussian distributed, which is parameterized through the first
two moments, one could therefore well rely upon the MV framework and the choice
of a risk measure is purposeless (Hirdle et al. 2014). The empirical study of Adam
etal. (2008) based on the monthly returns of 16 hedge funds from January 1990 to July
2001 further showed the robustness of portfolio allocation with respect to the choice
of risk measures even the samples are non-Gaussian distributed. Consequently, it
seems that the risk managers do not need to worry about the choice of risk measures
for portfolio allocation regardless of the Gaussian assumption if the asset returns are
assumed to be i.i.d.. However, many empirical studies show that hedge fund returns
often exhibit autocorrelation, and have significant negative skewness and excess
kurtosis (Giamouridis and Vrontos 2007; Harris and Mazibas 2010, 2013). This
motivates us to consider portfolio selection problem without the i.i.d. assumption
for asset returns. Furthermore, we investigate the impacts of trader’s risk attitude on
the performance of optimal portfolios under assuming the asset returns following a
multivariate time series model.

To model the autocorrelation and conditional heteroscedasticity of each underly-
ing asset, we consider the following model:

Xi,t = .fi,t(Xi,tfls ai,t),
it = 0itEit, (3.1)
Oip = hit1(0is, €558 =0,...,t = 1),

where X, is the log return of the ith asset at time ¢, f;, is a function of X; ,_; =

(Xio0, Xit,-.., Xiy—1)and a;, fori =1,..., p, h;,—; is an F,_| measurable func-
tion with F;_; being the set of information from time O up to time # — 1 and ¢;,,
t=0,1,...,arei.i.d. innovations with zero mean and unit variance for the ith asset

at time ¢. In addition, assets on the financial markets usually exhibit dependence.
For example, the stock prices of two companies which have a complementary rela-
tionship may both increase or decrease simultaneously by public good or bad news
(Zhang et al. 2015). Recent studies indicate that pair-copula decomposed models
represent a more flexible way to construct multivariate distributions than standard
multivariate copulae. Therefore, we model the joint distribution of ¢; ;,,i = 1, ..., p,
by a vine copula function. Vine copulae are able to model complex dependency pat-
terns by using a cascade of bivariate copulae (see Aas et al. 2009; Brechmann and
Schepsmeier 2013 and the references therein).

Assume that X; ,,fori =1,...,pandt =0, 1, ..., follow model (3.1) and con-
sider the following portfolio optimization problem:
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mcax m(e) = Cl,zEr(Xl,H-l) + Cz,th(Xz,z-H) + -+ Cp,tEt(Xp,zH),

P
subject to ¢; > 0, Zci,, <landp;(v) <L, (3.2)

i=1

where ¢, = (ci 4, .. ., c,,,,)T with ¢; ; being the holding position of X; ;, ¢, > 0 is the
no short-selling constraint, Zl"zl ¢y < 1 is the budget constraint, E,(-) denotes the
conditional expectation given F;, p,(v) is the value of the time-r SRM with level v,
which reflects the degrees of risk aversion, and L is a pre-specified upper bound of
risk. The main reason that we employ the SRM as the risk measure in this chapter
is its link to investor’s risk preference. The SRM is not only a general family of
coherent risk measures (for example, the ES is a special case of the SRM), but also
can reflect the degrees of risk aversion of investors since the generator of the SRM
can be obtained by a trader’s personal utility function. More details of the definition
and properties of the SRM are introduced in Sect.3.2.

Although model (3.1) is capable of depicting the dynamics of the underlying
returns better than the traditional i.i.d. assumption, the corresponding computation
of determining the optimal asset allocations in (3.2) becomes complicated. Harris
and Mazibas (2013) considered a portfolio selection problem with the ES being the
risk measure and employed an AR(1)-EGARCH(1,1) model to depict the marginal
dynamics of the return process for each underlying asset. Moreover, they used copulae
to model the dependence between the underlying assets. Since the linearization of the
optimal portfolio selection problem under this realistic but complex model is difficult
and not available yet in the literature, the method based on Monte Carlo simulation
is proposed to obtain the optimal asset allocations. However, the simulation based
method could be time consuming and the simulation biases could lead to wrong
decision, especially when the optimal solution occurs on the boundary.

In the literature, linear programming (LP) is widely used in portfolio selection
under the i.i.d. assumption. LP is a fast algorithm to obtain accurate estimates of
the optimal asset allocations, especially when the optimal solution occurs on the
boundary. Due to the principal that potential return rises with an increase in risk, the
optimal solution of the portfolio selection problem usually occurs on the boundary
and thus LP is a suitable technique for solving it. For example, Markowitz (1952)
used LP to solve the MV portfolio selection problem. Rockafellar and Uryasev (2000)
considered portfolio selection problem with ES and proposed a linearization to select
the optimal portfolio by LP. Recently, Huang and Lin (2017) proposed a linearization
scheme to approximate the original portfolio selection problem and then obtain the
optimal asset allocations by LP when the SRM is used as the risk measure.

In the simulation study, we conduct several scenarios to investigate the accuracy of
the proposed LP for obtaining the optimal allocations, the effects of the magnitude of
tail dependence and the degrees of risk aversion on the performance of the optimal
portfolio. We also conduct empirical studies by using the underlying stock prices
included in FTSE TWSE Taiwan 100 Index. Our empirical results indicate that the
optimal portfolios have different reactions to different economic situations.
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The remainder of this chapter is organized as follows. Section 3.2 reviews some
backgrounds including coherent measures of risk, utility functions, SRM and vine
copulae. The LP of Huang and Lin (2017) for solving (3.2) with model (3.1) is
introduced in Sect.3.3. Simulation studies are presented in Sect.3.4. Section3.5
demonstrates empirical results by using the stock prices included in the FTSE TWSE
Taiwan 100 Index. Concluding remarks are given in Sect. 3.6. Computational details
are presented in the Appendix.

3.2 Backgrounds

3.2.1 Coherent Measures of Risk

Let G be the set of random portfolio returns, p be a risk measure, which is a mapping
from G into R, and X denote the return of an asset.

(A1) Translation invariance: If A is a deterministic portfolio with guaranteed return
«, then for all X € G we have p(X + A) = p(X) — a.

(A2) Subadditivity: Forall X and Y € G, p(X + Y) < p(X) + p(Y).

(A3) Positive homogeneity: For all A > 0 and all X € G, p(AX) = Ap(X)

(A4) Monotonicity: For all X and Y € G with X <Y, we have p(Y) < p(X).

(A5) Law invariance: For any portfolio returns X and Y with distribution function
Fx and Fy, respectively, if Fx = Fy, then p(X) = p(Y).

(A6) Comonotonic additivity: For any comonotonic random variables X and Y,
p(X +7Y) = p(X) + p(Y).

A risk measure satisfying (A1)-(A4) is called coherent (Artzner et al. 1999).
Unfortunately, the popular risk measure, VaR, is not coherent since VaR fails to
comply with the subadditivity property and thus does not provide good incentives
with respect to portfolio diversification. In addition, it is not in general continuous
with respect to the confidence level . Consequently VaR is sensitive to small changes
in o« when it is applied to discontinuous distributions (Acerbi and Tasche 2002). On
the other hand, Dhaene et al. (2004) showed that the ES is a coherent, law invariant
(A5) and comonotonic additive (A6) risk measure. Thus, the ES can be treated as a
coherent extension of the VaR.

3.2.2 Utility Function

When a consumer or an investor exposed to uncertainty, a risk-averse investor might
choose to accept with a low but guaranteed payment, rather than choosing an invest-
ment with high expected returns but also with high risk of losing money. Let U (x)
be the utility function of a risk-averse investor, where x denotes the wealth. The
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aversion to risk implied by a utility function U(-) is to be assumed as a form of
concavity (Pratt 1964). The more the curvature of a concave function U (x), the
more the risk aversion is there. Hence, a more risk-averse investor prefers a more
conservative investment. In the following, three popular utility functions are briefly
introduced through the absolute risk-aversion, denoted by A(x) = —U"(x)/U’ (x),
and the relative risk-aversion, abbreviated as R(x) = —xU"(x)/U’(x), (Leroy and
Werner 2001):

1. Constant Absolute Risk-Aversion (CARA): If A(x) is a positive constant which
is independent of wealth x, then we call the corresponding utility function being
CARA. For example, the negative exponential utility function defined by U (x) =
—e " is a CARA utility.

2. Constant Relative Risk-Aversion (CRRA): If R(x) is a positive constant R which
is independent of wealth x, then we call the corresponding utility function being
CRRA.If R = 1, then the utility function of CRRA can be writtenas U (x) = In x,
forx > 0, whichis called logutility. If R # 1,thenU (x) = ’g, forx > 0, which
is called power utility.

3. Hyperbolic Absolute Risk-Aversion (HARA): If autility function satisfies A(x) =
—U"(x)/U'(x) = 1/(ax + b), which is a hyperbolic function of x, then it is
called HARA. In particular, the HARA encompasses the CARA and CRRA cases
since it reduces to the CARA if a = 0 and reduces to the CRRA if » = 0. In
general, if ab # 0, the utility function of the HARA can be written as

log(x — x;), ifa=1,
Ux) =1 (x—x)'%

I otherwise,

for x > xy, and U (x) = —o0, for x < x;, where R* = 1/a and x;, = —b/a.

3.2.3 Spectral Measures of Risk

A general class of coherent risk measures, called spectral risk measure (SRM), is
defined by

1
My(X) = — / (0 F (p)dp, (33)
0

where Fy (p) = inf{x|Fx(x) > p} and ¢ € Z1([0, 1)) is called the risk aversion
function of the risk measure M4(X). In addition, ¢ is said to be an “admissible” risk
spectrum if it is non-negative, non-increasing and fol ¢(p)dp = 1. SRM is a coherent
measure of risk if ¢ is an admissible risk spectrum (Acerbi 2002). In the realm of
spectral measures, an investor can optimize a portfolio in a more articulated way

by expressing her subjective risk aversion via the function ¢ (Acerbi and Simonetti
2002).
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Acerbi (2002) further mapped any rational investor’s subjective risk aversion (or
utility preference) onto a SRM. For example, if we consider the exponential utility
function defined over random outcomes x by U (x) = —e™"*, where v > 0, then the
risk aversion function ¢(-) is defined by setting ¢(p) oc e~"”. To satisfy the constraint
Jil d(p)dp = 1, we have ¢(p) = 2 where 0 < p < 1.

Additionally, since the ES can be expressed as

1 « 1
ES(X) = _E/ Fy (p)dp = —/ bes,(p)Fx (p)dp, for0 <a <1,
0 0

where ¢, (p) = iI{ p<a} With I,y being an indicator function, thus the SRM defined
in (3.3) can be expressed as a weighted average of expected shortfalls (Acerbi 2004).

3.2.4 Vine Copulae: C- and D-Vines

Traditionally, traders evaluate the performance and risk of a portfolio under the
multivariate Gaussian assumption. However, many empirical studies found that this
assumption is not adequate for financial data (Danielsson et al. 2006; Morton et al.
2006; Giamouridis and Vrontos 2007). Copulae help to release the Gaussian assump-
tion and offer a general class of joint distributions. It uses a copula function to link the
marginal distributions of individual asset returns to depict the dependence structure.

Copula has recently become increasingly popular in many fields of applications
for constructing multivariate distributions (Choros et al. 2013, 2014). It establishes
the link between the univariate margins and the multivariate distribution functions.
The main concern in practical implementation is how to identify an adequate family
of copulae. A rich variety of bivariate copula families is well-investigated in the
literature (Joe 1997; Nelsen 2006). However, the choice of adequate families for
higher dimensions is more challenging. Standard multivariate copulae such as the
multivariate Gaussian, Student-# and Archimedean copulae lack the flexibility of
accurately modeling the dependence among larger numbers of variables. In stead of
generalizing the standard multivariate copulae by increasing the complexity of their
structures, vine copulae propose to model multivariate dependency by using and
benefiting from the rich variety of bivariate copulae as building blocks (Joe 1996;
Bedford and Cooke 2001, 2002; Kurowicka and Cooke 2006).

Vine copulae are flexible graphical models for describing multivariate distribu-
tions by decomposing a multivariate density into a series of bivariate copulae, or
called pair-copulae, where each pair-copula can be chosen independently from each
others (Aas et al. 2009; Brechmann and Schepsmeier 2013). This decomposition
allows for an enormous flexibility in modeling asymmetries and tail dependence
of a large number of variables. Aas et al. (2009) proposed a method for statistical
inference of pair-copula decomposed models. Brechmann and Schepsmeier (2013)
established an R package, called CDVine, which provides functions and tools for
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statistical inference of canonical vine (C-vine) and D-vine copulae, where the C- and
D-vines are two successful and popular vine copula families in many applications
(see Brechmann and Schepsmeier 2013, and the references therein). In the follow-
ing, we employ the multivariate distribution with 4 variables as an example to briefly
illustrate the 4-dimensional C- and D-vines.

There are 12 different 4-dimensional C-vine forms and 12 different 4-dimensional
D-vine forms, and none of them are the same. The 4-dimensional C-vine structure
is generally represented as

f1234(x) = fi(x1) - f2(x2) - f3(x3) - fa(xa)-
cia{Fi1(x1), Fa(x2)}eia{Fi(x1), F3(x3)}cia{ Fi(x1), Fa(xa)}-
o3 {F (2 | x1), F(x3 | x)}eaap {F(x2 | x1), F(xq | x1)}-
a2{F (x3 | x1, x2), F(x4 | x1,x2)} 34

and the 4-dimensional D-vine structure is represented as

f123a(x) = fi(x1) - f2(x2) - f3(x3) = fa(xa)-
cia{F1(x1), Fa(x2)}eas{Fa(x2), F3(x3)}csa{ F3(x3), Fa(xa)}-
ciaplF(x1 | x2), F(x3 | x2)}coas{F (x2 | x3), F(x4 | x3)}-
crap3{F (x1 | x2, x3), F(x4 | X2, x3)}, (3.5)

where X = (X1, X2, X3, X4), f1234(X) is the joint density of (X1, X», X3, X4), fi(x;) is
the marginal density of X;, F;(x;) is the distribution function of X; fori = 1, 2, 3, 4,
F (x5 | x1) is the conditional distribution function of X, given X, ci2{F|(x1), F2(x2)}
is a pair copula density of X and X», co31{F (x2 | x1), F(x3 | x1)} is the conditional
pair copula density of X, and X3 given X; and so on. The details of the deviation of
(3.4) and (3.5) are given in the Appendix.

The C- and D-vine trees help us to easily memorize the decompositions of (3.4) and
(3.5). For example, the corresponding structure of a 4-dimensional C-vine including
3 trees is shown in Fig. 3.1a. In the first tree, the dependencies of the first and second
variables, of the first and third, of the first and fourth, and so on, are modeled by
pair copulae. That is, if we assign the orders 1,...,4 to the four random variables,
then the pairs of (1,2), (1, 3), (1,4), ... are modeled by bivariate copulae. In the
second tree, (2, j | 1) denotes the conditional dependence of the second and the jth
variables given the first variable, for j = 3, 4, and a bivariate copula is employed
to model each conditional distribution. In the third tree, we denote the conditional
dependenceof (2,3 | 1)and (2,4 | 1) by (3,4 | 1, 2) and again model the conditional
joint distribution of (3, 4 | 1, 2) by a bivariate copula. By comparing the C-vine trees
with the decomposition given in (3.4), the pairs shown in the C-vine trees are exactly
the same with the components of the pair copulae in (3.4). Similarly, Fig. 3.1b presents
the corresponding 4-dimensional D-vine trees to (3.5).
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Fig. 3.1 a A 4-dimensional C-vine tree. b A 4-dimensional D-vine tree

3.3 Methodology

Rockafellar andUryasev (2000; 2002) proposed a scheme of linearization of the opti-
mization problem (3.2) with the ES under the assumption of i.i.d. returns. In the fol-
lowing, we present their technique with the ES in our notation. First, rewrite the ES:

1
ES(x,t = _EZ(YH—I | _Yt+1 > fa,t) = g(x,l + EEI(_Yt-H - fa,t)Jr’

where Y, = 25:1 Cm.t Xm.1+1 1s the portfolio return at time ¢ + 1 and &, is the
corresponding VaR of Y, with respect to « level at time 7 4+ 1 conditional on F;.

Then, the optimization problem (3.2) with the ES can be rewritten as

14
max  E,(Y,;1) subject to ¢¢ > 0, Zcm,t <1, and

€,8015215052 —
1 t
fa,t + EZi:lZi <L,
Zi > 0, (3.6)
zi + o > Y, fori=1,....¢t,

by incorporating z;’s to extend the set of unknown parameters. In (3.6), the objective
function and the constraints are now linear functions of the unknown parameters
{ci, €ars 215 --vs 20} and thereby a LP technique can be used to obtain c;.

However, many empirical studies show that the return processes of the underlying
assets in financial markets usually exhibit autocorrelation, negative skewness, kur-
tosis, conditional heteroscedasticity and tail dependence (Giamouridis and Vrontos
2007; Choros et al. 2013, 2014). It is of particular importance for asset managers
to incorporate these features of the financial time series data when creating an
investment or hedging portfolio. In order to model the autocorrelation and condi-
tional heteroscedasticity, we assume that the mth underlying return process X, ,
m=1,..., p, follows (3.1) and the joint distribution of (g, ..., €p,) is modeled
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by a C- or D-vine for depicting the multidimensional dependence among the underly-
ing assets. Model (3.1) includes various financial time series models which are widely
used in the market. For example, the ARMA-GARCH and ARMA-EGARCH mod-
els are two particular cases being commonly discussed in the economic, statistical,
and financial literatures (see Bollerslev 1986; Nelson 1990; Duan 1995; Brandt and
Jones 2006; Harveya and Sucarrat 2014).

Huang and Lin (2017) extended the i.i.d. scenario of Rockafellar and Uryasev
(2000; 2002) to a more realistic situation as illustrated in (3.1) and linearize the
nonlinear optimization problem in (3.2) with SRM. In particular, if we employ the
ES, which is a special case of the SRM, as the risk measure, then the optimization
problem (3.2) can be rewritten as

P
max  E;(Y;y), subject to ¢ > 0, ZC”” <1, and
t

(VRSP ST 4 =

1 t

L > _Zizlcm,zﬂm,z + f:t + to Zizl Zis

7z >0 (3.7)
Zi = _é.;,t — ki, fori=1,...,1,

where p,, = E(Xpp141), ki = 251:1 Cim,tOm,1+1Em,i»> & ; 1 the corresponding VaR
of k41 with respect to « level at time 7 4 1 conditional on F;. From comparing the
expressions of (3.6) and (3.7), one can find the following three major changes:

1. The Ist term on the right-hand-side of the 1st inequality in (3.7) stands for the
autocorrelated part.

2. On the right-hand-side of the 3rd inequality in (3.7) since the m-th summand of ;
includes the conditional volatility o,, ;4, thus x; reflects the effect of conditional
heteroscedasticity.

3. The role of the i.i.d. returns X,, ; in (3.6) for each fixed m is replaced by the i.i.d.
innovations €, ; contained in &; in (3.7).

3.4 Simulation Study

In this section, we conduct several simulation scenarios to investigate the accuracy
of the LP, the effects of the magnitude of tail dependence and the degrees of risk
aversion on the performance of the optimal portfolio.
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3.4.1 A 2-Dimensional Case

First, for the purpose of demonstration we concentrate on p = 2.

1. Generate observations of the mth underlying return process from the following
AR(1)-EGARCH(1, 1) model, m =1, 2,

Xm,t = ¢m,0 + d)m,le,tfl + Am,t,
At = Om,t€m,t> (3.8)
log Uyzn,; =ky + Gy log U,%,,;71 + Apllem -1l — E(|5m,z—1 DI+ Lymi—1,

where (g1, €2,1) are i.i.d. samples from a bivariate ¢ distribution with zero means,
unit variances, correlation p, and v; = v, = v. In particular,

24/v =2 [(v + 1)/2]
(v— DI /27
2. Solve the optimization problem defined in (3.1) and (3.2) for ES and SRM cases,

where a = 0.05 for the ES and the generating function ¢(-) for the SRM is set to
be ¢(p) = 10e717 /(1 — 719 for 0 < p < 1.

E(lem,l—l |) =

The expected returns (on the upper panel) and the values of risks (on the lower panel)
of portfolios with different holding weights, ¢, of the 1st underlying asset under the
model (3.8) are presented in Figs.3.2 and 3.3 with ES and SRM, respectively.

The parameters in (3.8) are settobe p = 0.5, v = 10, ¢; o = 0.01, ¢ o = 0.0105,
¢l,l = 002, ¢2,1 = 00199, k] = k2 = —0.3, A] = A2 = 01776, G] = G2 =0.95
and L = L, = —0.05, and the upper bound L of the ES (or SRM) is set up to be
the value of the ES (or SRM) of the portfolio with ¢; = ¢, = 0.5. Figure 3.2 plots
the results of the ES case and Fig. 3.3 presents the results of the SRM with 7 = 250
on the left panel and 7" = 500 on the right panel. The red dashed lines in the lower
panel denote the predetermined upper bound of the risk. If the value of the risk of
a specified c; is below the red dashed line, then we plot the corresponding point in
green, otherwise we mark the point in blue. The red circles on the upper panel denote
the optimal solution calculated from the LP, which are close to the optimal selection
of ¢; shown in Figs. 3.2 and 3.3, especially we increase the number of observations
T to 500. This phenomenon confirms the accuracy of the proposed method in this
2-dimensional case.

3.4.2 The Impacts of Tail-Dependence

In this section, we investigate the impacts of tail-dependence under bear or bull
markets. Consider the case of 10 assets, where assets 1-5 are independent and assets
6-10 have nonlinear tail dependency. We employ a 5-dimensional D-vine to model
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Fig. 3.2 The expected returns and the values of the ES of portfolios with different holding weights
c of the 1st underlying asset under model (3.8), where the numbers of observations are a 7 = 250
and b T = 500. @ XFGexp_rtn_ES_2d
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Fig. 3.3 The expected returns and the values of the SRM of portfolios with different holding
weights ¢ of the Ist underlying asset under model (3.8), where the numbers of observations are a
T =250and b T = 500. @ XFGexp_rtn_SRM_2d

the joint distribution of the dependent assets 6—10. In particular, we employ bivariate
Clayton and Gumbel copulae to describe the nonlinear tail dependency between
assets 610 in the first tree of the D-vine for bear and bull markets, respectively, where
the copula parameters are randomly chosen from a U (3,5) random variable. By using
the same settings as in Sect.3.4.1, except for setting ¢; o = 0.1, fori =1,...,5,
and (¢; 0, ¢i.1, ki) = (0.11,0.02, —0.28), fori =6, ..., 10, to enlarge the expected
returns of the assets in the bull market case, the optimal allocations are solved by the
proposed LP method with ES under the bear and bull markets, separately.

We compute the sums of the weights of the assets 6—10 under bear and bull markets
separately. The average of the holding proportions of assets 6—10 in the optimal
portfolio based on 100 random replications is around 37% for the bear market and
is around 90% for the bull market. These values reveal interesting and reasonable
phenomenon. In a bear market, since the lower tail dependence of the assets 6-10
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are modeled by a D-vine with Clayton copulae, the prices of the assets 6-10 tend
to decrease simultaneously. In practice, diversification strategies are employed by
investors in tough economic times. Hence, the independent assets 1-5 are more
attractive to investors than the lower tail-dependent assets 6—10 in bear markets. On
the contrary, the upper tail dependent assets have higher chance to be selected in the
optimal portfolio than the independent assets in bull markets since the assets with
upper tail dependencies tend to increase simultaneously.

3.4.3 The Impact of the Degrees of Risk Aversion

In this section, we investigate the performance of the optimal portfolios with different
degrees of risk aversion, where each asset return process is assumed to follow an
AR(1)-EGARCH(1,1) process. Consider that an investor plans to construct a portfolio
by solving (3.2) with 30 assets subject to his personal risk attitude with a HARA
utility function U (x) = log(x + b), where b € (—1, 0). Let ¢ be a positive constant
satisfying max(0, b) < € < 1 + b and set the generating function ¢(p) of the SRM
to be

-1
og57 0<p<e—b,
OP) =1 _1oa(h + b (3.9)
M,E_bfpfl,
7

wheren = bloge — (1 + b) log(l + b) 4+ (1 + b) — € > 0and b reflects the degrees
of risk aversion of an investor.

Figure 3.4a presents boxplots of the optimal expected returns obtained by solv-
ing (3.2) with a generating function of the SRM defined in (3.9), where b =
—0.2, —0.3, —0.5, £ = 10~* and the number of replications is 100. Figure3.4b
presents the corresponding utility functions, where other parameters in model (3.8)
are set to be the same as in Sect.3.4.1. In Fig.3.4b, the solid lines are the tangents
at x = 0.7 for the 3 utility functions. Since the slope of the tangent line in the case
of b = —0.5 is larger than the others, thus investors having the utility function with
b = —0.5 are more aggressive than those with b = —0.2 and —0.3. Figure 3.4a indi-
cates that less risk-averse or more aggressive investors have larger expected returns
than conservative investors.

3.5 Empirical Studies

We carry out our empirical investigation by using underlying assets stock price data
included in the FTSE TWSE Taiwan 100 Index. We selected 79 stocks from 100
underlying assets included in the Taiwan 100 Index, where the daily returns from 1,
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Fig. 3.4 a Boxplots of the optimal expected returns obtained by solving (3.2) with a generating
function of the SRM defined in (3.9), where b = —0.2, —0.3 and —0.5. b The corresponding utility
functions for b = —0.2, —0.3 and —0.5. @XFGexp_rtn_SRM

December 2004 through 3, July 2014 (2365 observations) are used for investigation.
This period includes a number of financial crises, for example, the subprime lending,
stagflation, the Lehman crisis, the Greek government-debt crisis as well as the U.S.
monetary policy-QE2. These events caused financial markets to have large volatility
variation. In the following, we divide the time period into three sub-periods for the
investigation: December 2004 to November 2007 (denoted by P1), representing rela-
tively favorable market conditions (737 observations), December 2007 to December
2010 (denoted by P2), representing more extreme market conditions (764 observa-
tions) and January 2011 to 3, July 2014 (denoted by P3), representing improved
market conditions (864 observations). We construct a self-financing trading strategy
by using the proposed LP method to daily rebalance the portfolio with the 79 stocks
for each of the three sub-periods. In particular, the FTSE TWSE Taiwan 100 Index
is used as our benchmark for comparison. In the following, we use P1 as an example
to illustrate the details of the investigation:

1. Let P, , and FT SE, be the price of the mth asset and FTSE TWSE Taiwan 100
Index at time ¢, where ¢+ = 0O stands for the date of 1, December 2004.

2. Let V; denote the value of our portfolio at time ¢ and V;s0 be the same with the
value of FTSE TWSE Taiwan 100 Index on 5, December 2005. That is,

P
Vaso = FT SEpsg = b®° Zcm,ZSOPm,ZSO + Cashys,
m=1
where Cashayso = FTSEaso(1 — .7 _ cmos0) is the amount invested in the
bank, b0 = FTSEs an:l Cm'250/ ZZ:] Cm.,250 Pm’250 is a scalar such that
Vaso = FT SE»sp, cm.250 are obtained by solving (3.2) with ES of level o = 0.05
by the proposed LP method, and each underlying return process is modeled by
an AR(1)-EGARCH(1,1)basedon X,,; =In Py, —In P, ,_; fort = 1,...,250
andm=1,...,79.
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3. Attime r = 251, the value of our portfolio is Vas;- = 6@V 3P _ ¢, 550 Py 051 +
e’ Cashyso prior to adjusting the allocations, where rgqy is the daily riskfree
interest rate and is set up as 0.01/250 in our investigation. By using the data
Pt =1,...,251, we reestimate the dynamic models of each return process
and compute the updated optimal allocations, which are proportional to ¢, 2s;
obtained from solving (3.2) by LP, where the value of the updated portfolio,
denoted by V»s;+, is the same as V,s;-. That is,

P
Vasi+ = b®V Z Cm,251 Puost + Cashasy, (3.10)

m=1

where @D = Vos1- 3P 051/ DL Cmosi Puosi is a scalar such that
Vas1- = Vasy+ for satisfying self-financing, and Cashys;=Vas;- (1— Z,’:lz] Cm.251)
is the amount invested in the bank after the reallocation.

4. Repeat Step 3 until the end of P1.

Figure 3.5a—c plot the values of our trading strategy and the FTSE TWSE Taiwan
100 Index for P1, P2 and P3, respectively, where the black line is the values of the
Taiwan 100 Index and the upper bound L of the risk is set to be 0.02, 0.03 or 0.05.
In Fig.3.5a—c, the values of the self-financing portfolio with L = 0.05 (green line)
fluctuate more than those of L = 0.02 (red lines) and 0.03 (blue lines) no matter
which economic situation is since a more aggressive trading strategy (with larger L)
could gain more profits by taking more risks. In particular, the optimal portfolio tends
to be more aggressive (with larger L) in bull markets and be more conservative (with
smaller L) in bear markets. For example, during the financial crisis from December
2007 to June 2009 in Fig. 3.5b, the optimal portfolios with smaller L perform better
than those with larger L.

In practice, investors would not use a fixed L for selecting their optimal portfolio,
but rely on constructing the efficient frontier with various L instead. The discussion
of how to construct the optimal portfolio through the efficient frontier framework
is beyond the scope of this chapter. The objective of this chapter is to demonstrate
that the proposed LP is useful to obtain the optimal allocations under conditional
heteroscedastic models with more general risk measures than standard deviation. The

Fig.3.5 The values of the self-financing trading strategy and the FTSE TWSE Taiwan 100 Index for
a P1 b P2 ¢ P3 with different fixed upper bounds of risk. @ XFGTWSE100_strategy_fixedESlevel


https://github.com/QuantLet/XFG3/tree/master/XFGTWSE100_strategy_fixedESlevel

3 Portfolio Selection with Spectral Risk Measures 53

empirical study is designed to investigate whether the optimal portfolio would react
to different economic situations if we consider a more complex but more realistic
model. Please note though that we did not consider transaction costs in the daily
reallocation and also allow to hold fractional numbers of shares of assets. What we
have done is to provide an accurate and fast computational method for the investors
who use model (3.1) to depict the dynamics of the underlying assets and obtain their
optimal allocations of the assets by solving (3.2).

3.6 Concluding Remarks

In this chapter, we considered a portfolio optimization problem with the SRM, where
the dynamics of the underlying return processes are depicted by autoregressive and
conditional heteroscedastic models. The tail-dependence of the underlying assets
is modeled by a CD-vine copula. A linearization of the optimal portfolio selection
problem is used to compute the optimal asset allocations accurately and quickly. Sim-
ulation studies are conducted to investigate several interesting economic phenomena.
First, we demonstrate the accuracy of the LP method for solving the optimal portfo-
lio problem by using the case of two underlying assets. Second, we reveal that the
optimal portfolio tends to diversify the investing risk by selecting the independent
assets in bear market. Third, the less risk-averse investors achieve larger expected
returns than conservative investors. The empirical study indicates that the optimal
portfolio tends to be aggressive in bull markets and be conservative in bear markets.

Appendix

Derivation of (3.4) and (3.5)
To show the 4-dimensional C-vine, first note that

S123a(x) = fr(xp) fxa [ x) s | xp, x2) f(xa | x1, X2, X3), (3.11)

where X = (x1, X2, X3, X4), f1234(X) is the joint density of (X1, X2, X3, X4), fi(x;)
is the marginal density of X; fori =1, 2, 3,4, f(x; | x) is the conditional density
of X, given X and so on. In addition, we have the following identities

f x| x1) = cna{Fi(x1), F2(x2)} fa(x2),
f(xa, x3 | x1)
S | x1)
e {F (x2 [ x1), Fxs | x1)}f(x3 | x1)
= e {F (x2 | x1), F(x3 | x)}eiz{F1(x1), F3(x3)} f3(x3),

fx3 ] x,x) =
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and

Sf(x3, x4 | x1, x2)
S x| x1, x2)
= oA F(x3 | X1, x2), F(xq | x1,x2)} f (x4 | X1, X2)
S (x2, x4 | x1)
S x| x1)
= a2 F(x3 | x1, x2), F(xa | x1, x2)feaap {F (x2 | x1), F(xg | x0)}f(xs | x1)
= caapa{ F(x3 | x1, x2), F(xq | x1, x2)}eaapn {F (x2 | x1), F(xq | x1)}
cia{F1(x1), Fa(xq)} fa(xa).

fxa | x1,x2,x3) =

= caf F(x3 | x1, x2), F (x4 | x1, x2)}

By substituting the above identities into (3.11), we have

f1234(X) = f1(x1) f2(x2) f3(x3) fa(x4)
ci2{Fi(x1), Fa(x)feiz{F1(x1), F3(x3)}cra{ Fi1(x1), Fa(x4)}
3 {F (x2 | x1), F(x3 | x)}eaan {F (x2 | x1), F(xs | x1)}
e F(x3 | x1, x2), F(x4 | x1, x2)}.
Therefore, (3.4) holds.

On the other hand, the 4-dimensional D-vine is obtained through the following
representation:

S1234(X) = fo(x2) f(x3 [ x2) f(x1 | X2, x3) f (x4 | X1, X2, X3). (3.12)

By using a similar argument to the derivation of the C-vine, we have the following
identities:

F(x3 1 x2) = ca3{Fa(x2), F3(x3)} f(x3),
fOer 1 x2, x3) = cizpdF(x1 | x2), F(x3 | x2)}f(x1 | x2)era{F1(x1), F2(x2)} f1(x1),
Sxq 1 x1, x0,x3) = crapa{F(xy | x2, x3), F(xq | x2, x3) o430 F (x2 | x3), F (x4 | x3)},
c34{F3(x3), Fa(xq)} fa(xq).

Therefore, (3.12) can be rewritten as

f1234(x) = fi1(x1) f2(x2) f3(x3) fa(xa)
cio{F1(x1), Fa(x2)}es{Fa(x2), F3(x3)}caa{F3(x3), Fa(xq)}
ciplF(x1 | x2), F(x3 | x2)}coa3{ F(x2 | x3), F(xs4 | x3)}

cra3{F(x1 | x2, x3), F (x4 | x2, x3)}

and (3.5) holds.
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Chapter 4
Implementation of Local Stochastic
Volatility Model in FX Derivatives

J. Zheng and X. Yuan

Abstract In this paper, we present our implementations of the Local Stochastic
Volatility (LSV) Model in pricing exotic options in FX Market. Firstly, we briefly
discuss the limitations of the Black-Scholes model, the Local Volatility (LV) Model
and the Stochastic Volatility (SV) Model. To overcome the drawbacks of the above
three models, a more generalized LSV model has been proposed to describe the
dynamics of implied volatilities. Secondly, we present the details of LSV Model
calibration in terms of the Forward Kolgomorov equation. Thirdly, we introduce the
numerical methods of option pricing using the LSV model, including both the Back-
ward Partial Differential Equation (PDE) method and Forward Monte Carlo method.
Finally, based on our implementations, we compare the calibration and pricing results
of the LSV model with the LV model and the SV model, lower calibration errors and
relatively accurate pricing results are achieved, which demonstrates the effectiveness
of the methods presented in the paper.

4.1 Introduction

Traditional Black-Scholes model (Black and Scholes 1973) is broadly used in Euro-
pean vanilla option pricing for both FX and equity markets. In the Black-Scholes
model for FX market, the FX spot rate S; is assumed to follow the Stochastic Dif-
ferential Equation (SDE) as below

dSt = (rd - rf) Stdt + (TStde (4.1)
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where r; and r ¢ denote the domestic interest rate and the foreign interest rate respec-
tively, and volatility o is assumed to be constant.

However, in real market (e.g. the FX market), the volatility is not constant across
different strikes and maturity dates, which is quite important for pricing barrier
options. To tackle the problem of volatility smile and to describe the dynamics of
implied volatilities, several models have been developed to generalize Black-Scholes
model.

The Local Volatility (LV) model was firstly proposed by Dupire (1994). In the LV
model, the diffusion coefficient is a deterministic function of time and the FX spot
rate, oy (Sy, t), the corresponding SDE is as below

ds; = (rd — r_f) S;dt + oy (S;, t) S, dW; 4.2)

Theoretically, the LV model is able to provide a perfect fit to the quoted market
implied volatilities. However, it still has several drawbacks. Firstly, it has been pointed
out that the delta of an option computed from the LV model is far away from precise,
because of an improper implied volatility dynamics (Hagan et al. 2002). Secondly,
the forward implied volatility smile generated by the LV model is almost flat (Fengler
2005), but the smile persists over time in the reality. Thirdly, the LV model generates
the volatility smile using a deterministic function oy (S;, t), which depends on the
spot level S;. Therefore, the LV model is sticky-strike, which seldom happened in
the FX market (Clark 2011).

Based on an empirical observation of FX market, it is more reasonable to model the
instaneous volatility via a stochastic process, which leads to the Stochastic Volatility
(SV) model. In a SV model, the diffusion coefficient is a function of a stochastic
process v;, a (v;), the corresponding SDE is as following

s, = (rd — rf) S;dt + a (v;) §;,dW, (4.3a)
dv, =b () dt +c(v,)dZ, (4.3b)
dW,dZ, = pdt

where p represents the correlation between the Brownian motions W; and Z;. In
most cases, the stochastic variance v, is assumed to be mean-reverting, continuous,
and positive. For example, in the well-known Heston model (Heston 1993), the
Cox-Ingersoll-Ross (CIR) process is used to model the variance process v;:

dS; = (ra —ry) Sidt + /0, S, dW, (4.4a)
dv; =k (m — v,) dt + a/v,dZ, (4.4b)
dW,dZ, = pdt

where « is the mean-reverting speed, m is the mean-reverting level, and « corre-
sponds to the volatility of variance. Compared with the LV model, the SV model
is able to imply a more realistic forward implied volatility smile. However, it still
has several drawbacks. Firstly, the SV model is not able to fit the implied volatility
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surface perfectly as the LV does. Secondly, the SV model generates the same smile
irrespective of initial level of the spot, and is therefore “sticky-delta”, which is not
the reality in FX market either (Clark 2011).

To overcome the drawbacks of the LV model and the SV model, a more generalized
model, named Local Stochastic Volatility (LSV) model was introduced. In the LSV
model, the diffusion coefficient is the multiplication of a deterministic local volatility
component oz sy (S, t) and a stochastic volatility component v;. For example, the
SDE for a Heston-type LSV model is as below.

dS; = (ra —ry) Sdt + 015y (S, 1) 0 S, dW, (4.5a)
dv; =k (m — v,) dt + a/v,dZ, (4.5b)
dW,dZ, = pdt

In the LSV model, part of the volatility smile is generated by the deterministic
local volatility term o sy (S, t), while the rest part of the smile is generated by the
stochastic volatility term v,. Therefore, the LSV model is the model between*sticky-
delta” and “sticky-strike”, which is actually useful in the FX market. Moreover, it
fits the implied volatility surface quite well as the LV model does, and meanwhile
implies a more realistic forward implied volatility smile assumed by the SV model.

The rest of this paper is organized as following. In Sect. 4.2, we detail the LSV
model calibration process through solving a Fokker—Planck Equation (FPE) itera-
tively. In Sect. 4.3, two different numerical methods for pricing exotic options using
the LSV model are introduced, Backward PDE, and Forward Monte Carlo. Numeri-
cal results for model calibration and barrier option pricing are presented in Sect. 4.4,
followed by the conclusion remarks and future works in Sect.4.5.

4.2 Model Calibration

As mentioned in Sect.4.1, by choosing different stochastic processes for v,, we
can get different types of the LSV model. For simplicity, we limit our discussions
to Heston-type LSV model. The calibration of other types of LSV model can be
performed similarly.

Generally speaking, the calibration of the LSV model consists of two main steps.
In step 1, the parameters of the SV part are calibrated to fit a certain proportion of
volatility smile. The proportion is controlled by a mixing fraction parameter, which
is between 0 and 1. In step 2, the parameters of LV part are added to calibrate the
LSV model to the whole volatility smile.

Step 1: Calibrate the parameters for the SV part, this step is performed infrequently.
Specify a mixing weight n, which controls the proportion of volatility smile generated
by the SV part and the proportion generated by the LV part. The mixing weight is used
to mark down the implied volatility smile and skew, which can be done in two ways.
One way is to multiply the market quotes of Butterfly and Risk Reversal by the factor
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n. The Butterfly quotes correspond to the volatility smile, while the Risk Reversal
quotes correspond to the volatility skew. Since the multiplication will reduce the
volatility smile and skew, we calibrate a purely SV model to the market quotes with
areduced smile and skew. The other way is to calibrate a purely SV model to the true
market quotes firstly, and then multiply the volatility of variance « and correlation
p by the factor n, because the volatility of variance parameter corresponds to the
volatility smile, and the correlation parameter corresponds to the volatility skew.

Step 2: Calibrate the leverage function o gy (S;, t) so that the LSV model can fit
the market quotes of vanilla options. This step is usually performed more frequently
than step 1. We will detail the implementations of this step in the later part of
this Section.

In our experiments, we set the mixing fraction empirically as described in Clark
(2011). However, please note that the mixing fraction can also be calibrated using
the quoted prices of liquid barrier options, as described in Tian (1993).

The calculation of the leverage function oy gy (S;, t) is based on the following
important result: there exists only one LSV surface o5y (S;, ¢) so that the LSV
model can mimic the LV model, and o gy (S;, t) must follow

oLy (5.0 = E[orsv (5,0 v, | S =s] = orsv (5.0’ E[v, | S =s]  (4.6)
For the proof the above important result, please refer to Ren et al. (2007), Tachet

(2011). Based on the result, we can compute oy sy (S;, t) as the ratio between local
volatility and conditional expectation of stochastic volatility:

,v,1)d
oLsv (S, [) = \/% =oLy (S, [) \/ff:) ].71()5(;) vt)t) l:lv (47)

where opy (S}, t) can be acquired from the LV model. Therefore, the key of cal-
culating opsy (S, ) is to compute the joint probability distribution p (s, v, t).
Ren, Madan, and Qian (2007) firstly proposed to calculate p (s, v, t) by solving
the Fokker—Planck Equation (FPE) of the LSV model through a Finite Difference
Method. After their pioneering work, Tachet (2011), Tian (1993), and Clark (2011)
also solved the FPE with the Finite Difference Method, while Engelmann (2012)
used the finite volume method, and Cozzi (2012) used the finite element method.
Let X; = In (S;), the FPE for Heston-type LSV is as following

ap _ 102 vosy X0 p] | 9 lvorsy (X0 p] 1 507 [vp]
at 2 9X2 P 9X0v 2% T
d 1 d[(v—m)p]
+ o5 [(Evogsv (X, 1) — (ra — r_,-)) p] e (4.8)

where, for simplicity, o sy (S, t) = orsv (X;, t) refers to the leverage function of
LSV model either in logspot or spot coordinates.

To solve the FPE (4.8), an Alternating-Direction-Implicit (ADI) method is used.
Tataru and Fisher (2010) suggest to use a modified Douglas scheme, which was used
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by Hout and Foulson (2010) to solve the Backward pricing PDE for Heston model.
The modified Douglas scheme is as below.

Yo = pu—t + At [Fo (Pa—t ta=1) + F1 (Pu=t ta=1) + F2 (Pu—1. 1a—1)]

Yi —0AtF (Y1, 1) = Yo — OAtFy (pa—1, th—1) 4.9)
Yo —0AtF, (Y2, 1) = Y1 — OAtF> (1, the1)
Pn = Y,

where p, denotes the transition probability p (s, v, t,) at time #,. The parameter 0
affects the stability and accuracy of the ADI method, which lies in the range [0, 1]. Fp,
Fi, and F, refer to derivative terms in mixed derivative, v-direction, and X -direction
respectively.

3% [vorsy (X, 1) p]

Fo(p.1) =
o(p, 1) = pa X0
1,0 [vp] d[(v—m)p]
Fi(p.1) = —a> 4.10
l(pv ) 2a 8U2 +K v ( )
19%Jvols, X.0)p] 8 [(1
B (p.0) =3 [ ngp ] Tox [(wasv (X.0) = (ra = Vf)) P}

The initial value for the FPE is pg = p (X, v,0) = 6 (X — Xo) § (v — vp), where
the §() is the Dirac Delta function. According to Eq.(4.7), the leverage function at
time zero is o5y (Xo, 0) = Lﬁ?’o). At time #,, we have p, and 015y (X, 1,,), then
we can solve FPE (4.8) forward one step to get p,+, and then use Eq.(4.7) to get
the leverage function o gy (X, #,41) at time #,,;. This process is repeated through
time, and we can solve p, and o sy (X, t,,) for all time points:

The solved o sy (X, t) can be used to price derivative products, either by a back-
ward PDE or a forward Monte Carlo approach. We will detail the two pricing methods

for the LSV model in the next section (Fig.4.1).
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Fig. 4.1 Solve the FPE Iteratively to get the Leverage Function o5y (X, t)
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4.3 Pricing (Backward PDE and Forward Monte Carlo)

Let V (X, v, t) denotes the option value as a function of time to expiry ¢, log-Spot
level X, and the instaneous variance v. The backward pricing PDE for Heston-type
LSV model are as following.

o1, 2V 1, 8V 82V
E = EUGLSV (X, t)m"i_za UW'F,OO!UULSV (Xs t)m

1 A% 0%
+ra—rf—=voley (X,0)) — + Kk (m —v) — —ryV “4.11
FTp sy 39X v

Note that + = 0 corresponds to the option expiry, and t = T corresponds to today.
This is different from the FPE in Sect. 4.2, where we use t = O for today, and t = T
for option expiry.

We can also solve the backward pricing PDE using the modified Douglas scheme
as shown in Eq. (4.9). Instead, the mixed derivative operator Fy, v-direction derivative
operator Fi, and X-direction derivative operator F, for the pricing PDE are as follow.

2

1
Fo(V, 1) = X, 1) ———

0 (V,1) = pavorsy ( )8X8v
Fi (V1) L2 82V+ ( )8V Loy (4.12)
)= =-a"v—s+Kk(m—v) — — =7, .
! 2 9?2 v 2¢

B (V t)—lvaz (X t)az—v—l- ro—rs — ~vo? (X, 1) w L

2 (VL 1) = 50015y (4 Do a = If = 5V0Lsy (A Td

In the backward pricing PDE, we start from the terminal condition, i.e., the pay-
off at expiry (#+ = 0). Based on the pricing PDE and some boundary conditions,
we can propagate V (X, v, t) backward to today (t = T), where we get the option
value V (X7, vy, T) by interpolation. The terminal condition and other boundary
conditions are all determined by the option characteristics.

Besides the backward pricing PDE method, Monte Carlo method (Glasserman
2003) can also be utilized to price the options based on the LSV model. One key
problem of Monte Carlo method for the LSV model is the discretization scheme of
the SDE (4.5) for LSV model. A tradeoff between the computation complexity and
accuracy should be found in the discretization scheme. Let X, = In (S;), Eq.(4.5)
can be rewritten as follow.

1
dX; = [rd —ry = 5 Viotsy (X, z)] dt + sy (S 0V Vi (pdWo () + VT = P2 W, (1)
(4.132)
dVy =k (m — V) dt + o/ VidW, (t) (4.13b)

where dW,(¢) and dW,(¢) denote independent Brownian motions. When Feller
condition 2km > a? is not satisfied, the variance process can become negative
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with non-zero probability in the Euler discretization. Therefore, we adopt the QE
(Quadratic Exponential) (Andersen 2008) scheme for the discretization of the vari-
ance process. For the discretization of the log-spot process, we adopt the local-
freezing of o7 sv (x,1), introduced by Van etc. (2014). More specifically, the discretiza-
tion scheme for log-spot process is as follow.

1 P
Xip1 =X +1rA — 3 Zsv (i, ) Vi A + &Gfsv (xi, ;) (Vig1 — kmA 4 vicy)

+ Zo 1= p2e\Jotgy (xi 1) viA (4.14)

where Z, ~ N (0,1),c1 = kA — 1.

4.4 Empirical Results

For the implementations of LSV model, one strives to solve the FPE accurately with
low calibration errors w.r.t the market prices of vanilla options. In our empirical
results, the low calibration errors for LSV model are achieved, which demonstrate
the effectiveness of the methods presented in this paper. Moreover, we also compare
the pricing results of reverse knock-out barrier options using the LV, the SV, and the
LSV respectively. Among the three models, the price derived from the LSV model
is the closest one to the market prices.

As a representative example, we calibrate the LV model (Dupire model), the
SV model (Heston model), and the LSV model (as described above, its SV part is
Heston-type) from market data in June 22, 2016 (data source: Bloomberg Terminal).
Both the calibrated model parameters and calibration errors for the three models are
discussed as following.

The implied volatility market data is shown in Table4.1, while in Table4.2 we
present the calibrated implied volatilities of LV model with corresponding errors in
the bracket. One can see that the calibration errors are very small, suggesting that the
LV model is able to provide a perfect fit to the quoted market implied volatilities, as
stated in Sect.4.1. Theoretically the errors can be zero, however in practice there are
usually some small errors remained when numerical methods are used. The model
parameter, i.e. leverage surface oy (S;, t) in the LV model is shown in Fig.4.2.

The calibrated implied volatilities of the Heston model, with corresponding errors
in the bracket, is shown in Table4.3. Comparing Tables4.2 and 4.3, we can find
that the calibration errors for the Heston model are larger than LV model, which
demonstrates that the Heston model is not able to fit the implied volatility surface
perfectly as the LV does, as stated in Sect. 4.1. The corresponding model parameters
for Heston model is shown in Table 4.4.

In Table 4.5, we present the calibrated implied volatilities of the LSV model with
corresponding errors in the bracket. Comparing Tables4.2, 4.3 and 4.5, one can find
that the LSV model and the LV model can achieve much lower calibration errors than
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Table 4.1 EUR/USD market implied volatility (in%)

J. Zheng and X. Yuan

Maturity 10-Delta put | 25-Delta put | ATM 25-Delta call | 10-Delta call
W 22.554 19.756 17.333 15.944 15.531
2W 17.814 15.585 13.505 12.42 12.111
3w 16.466 14.176 12.217 11.304 11.334
M 15.135 13.334 11.555 10.676 10.375
6W 14.463 12.744 11.049 10.231 10.023
2M 13.304 11.725 10.175 9.465 9.416
3M 12.894 11.298 9.855 9.302 9.416
4M 12.897 11.272 9.841 9.315 9.475
M 12.901 11.243 9.825 9.33 9.542
6M 12.905 11.215 9.81 9.345 9.61
oM 12.79 11.088 9.733 9.32 9.662
1Y 12.666 10.951 9.65 9.294 9.719
18M 12.58 10.971 9.793 9.519 9.94
2Y 12.478 10.99 9.885 9.67 10.083

Table 4.2 Calibrated implied volatility of the LV model for EUR/USD (in%)

Maturity 10-Delta put 25-Delta put ATM 25-Delta call 10-Delta call
W 22.534[—0.020] | 19.799[0.043] 17.255[—0.078] | 15.919[—0.025] | 15.525[—0.006]
2W 18.259[0.445] 16.007[0.422] 13.813[0.308] 12.726[0.306] 12.413[0.302]
3w 16.765[0.299] 14.481[0.305] 12.427[0.210] 11.513[0.209] 11.513[0.179]
M 15.406[0.271] 13.579[0.245] 11.666[0.111] 10.799[0.123] 10.533[0.158]
6W 14.303[—0.160] | 12.630[—0.114] | 10.889[—0.160] | 10.081[—0.150] | 9.884[—0.139]
2M 13.550[0.246] 11.963[0.238] 10.355[0.180] | 9.636[0.171] 9.575[0.159]
3M 12.960[0.066] 11.371[0.073] | 9.866[0.011] 9.320[0.018] 9.434[0.018]
4M 12.867[—0.030] | 11.288[0.016] | 9.818[—0.023] |9.326[0.011] 9.475[0.000]
M 12.915[0.014] 11.286[0.043] | 9.858[0.033] 9.379[0.049] 9.585[0.043]
6M 12.944[0.039] 11.256[0.041] | 9.799[—0.011] | 9.347[0.002] 9.623[0.013]
oM 12.572[—0.218] | 10.926[—0.162] | 9.593[—0.140] | 9.216[—0.104] | 9.545[—0.117]
1Y 12.687[0.021] 10.975[0.024] | 9.641[—0.009] | 9.296[0.002] 9.723[0.004]
18SM 12.736[0.156] 11.120[0.149] | 9.883[0.090] 9.615[0.096] 10.042[0.102]
2Y 12.491[0.013] 11.003[0.013] | 9.870[—0.015] | 9.665[—0.005] | 10.085[0.002]
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Fig. 4.2 Leverage surface in LV Model for EUR/USD

Table 4.3 Calibrated implied volatility of the heston model for EUR/USD (in%)
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Maturity 10-Delta put 25-Delta put ATM 25-Delta call 10-Delta call
1w 14.797[-7.757] | 13.681[—6.075] | 12.772[—4.561] | 12.223[—3.721] | 12.003[—3.528]
2W 14.819[—2.995] | 13.558[—2.027] | 12.515[—0.990] | 11.926[—0.494] | 11.752[—0.359]
3w 14.906[—1.560] | 13.455[—0.721] | 12.270[0.053] 11.648[0.344] 11.544[0.210]
M 14.874[—0.261] | 13.332[—0.002] | 12.008[0.453] 11.369[0.693] 11.341[0.966]
6W 14.904[0.441] 13.146[0.402] 11.628[0.579] 10.989[0.758] 11.095[1.072]
2M 14.711[1.407] 12.797[1.072] 11.172[0.997] 10.566[1.101] 10.792[1.376]
3M 14.538[1.644] 12.384[1.086] 10.611[0.756] 10.063[0.761] 10.488[1.072]
4M 14.416[1.519] 12.107[0.835] 10.241[0.400] | 9.742[0.427] 10.291[0.816]
M 14.247[1.346] 11.828[0.585] | 9.908[0.083] 9.455[0.125] 10.101[0.559]
6M 14.104[1.199] 11.629[0.414] | 9.692[—0.118] |9.269[—0.076] | 9.970[0.360]
oM 13.666[0.876] 11.171[0.083] | 9.266[—0.467] | 8.885[—0.435] |9.641[—0.021]
1Y 13.316[0.650] 10.878[—0.073] | 9.036[—0.614] | 8.664[—0.630] | 9.418[—0.301]
18M 12.853[0.273] 10.565[—0.406] | 8.831[—0.962] | 8.460[—1.059] |9.167[—0.773]
2Y 12.535[0.057] 10.399[—0.591] | 8.763[—1.122] |8.378[—1.292] |9.017[—1.066]
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Table 4.4 Heston model parameters for EUR/USD

J. Zheng and X. Yuan

Initial variance 0.017
Mean-reverting speed k& 2.486
Mean-reverting level m 0.00953
Vol of variance o 0.57
Correlation p —-0.4

Table 4.5 Calibrated implied volatility of LSV model for EUR/USD (in%)

Maturity 10-Delta put 25-Delta put ATM 25-Delta call 10-Delta call
1w 22.097[—0.457] | 19.482[—0.274] | 16.998[—0.335] | 15.711[—0.233] | 15.338[—0.193]
2W 17.868[0.054] 15.653[0.068] 13.520[0.015] 12.481[0.061] 12.203[0.092]
3W 16.502[0.036] 14.248[0.072] 12.240[0.023] 11.357[0.053] 11.384[0.050]
IM 15.233[0.098] 13.434[0.100] 11.555[0.000] 10.719[0.043] 10.463[0.088]
6W 14.215[—0.248] | 12.554[—0.190] | 10.833[—0.216] | 10.056[—0.175] | 9.888[—0.135]
2M 13.419[0.115] 11.853[0.128] 10.270[0.095] | 9.575[0.110] 9.531[0.115]
3M 12.997[0.103] 11.425[0.127] | 9.923[0.068] 9.387[0.085] 9.505[0.089]
M 12.915[0.018] 11.352[0.080] | 9.882[0.041] 9.391[0.076] 9.543[0.068]
SM 12.954[0.053] 11.355[0.112] | 9.930[0.105] 9.449[0.119] 9.645[0.103]
6M 12.946[0.041] 11.279[0.064] | 9.815[0.005] 9.359[0.014] 9.628[0.018]
oM 12.779[—-0.011] | 11.150[0.062] | 9.788[0.055] 9.374[0.054] 9.679(0.017]
1Y 12.645[—0.021] | 10.936[—0.015] | 9.566[—0.084] | 9.191[—0.103] |9.617[—0.102]
18M 12.500[—0.080] | 10.879[—0.092] | 9.606[—0.187] | 9.313[—0.206] |9.741[—0.199]
2Y 12.414[—0.064] | 10.916[—0.074] | 9.735[—0.150] | 9.492[—0.178] | 9.899[—0.184]

the Heston model does. Theoretically, the LV model and the LSV model are more
likely to achieve zero calibration errors, whereas the Heston model can’t. In practice,
there are still some small errors remained for the LV model and the LSV model due to
numerical methods. Usually these numerical errors of the LSV model are larger than
the LV model, because the LSV model involves more complex numerical methods
than the LV model. In Table 4.5, the calibration errors for LSV model are very low,
which demonstrate the effectiveness of the numerical methods presented in Sects. 4.2
and 4.3.

The model parameters for the SV part of the LSV model are acquired from the
calibrated Heston model, except that the volatility of variance is multiplied by the
mixing fraction parameter, which is set to 0.4 here. The model parameter, i.e. leverage
surface o5y (S;, t) in the LSV model is shown in Fig.4.3.

As stated above, the key problem of the LSV model implementations is to solve
the FPE accurately to get low calibration errors. The FPE (4.8) is about the transition
probability p. To show the numerical stability, we export the time evolution of the
transition probability p in Eq.(4.8) to Fig.4.4. From Fig.4.4, we can see that the
evolution of transition probability is stable. It is noted that for numerical stability,
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Fig. 4.3 Leverage surface in LSV Model for EUR/USD

we make the following transformation to spot s and variance v when calculating
Eq. (4.8) numerically: Y; = In (S;/S0), Z; = In (V;/ V).

We also compare the pricing results of reverse knock-out barrier options, which
are up-and-out single-barrier call options, and traded quite frequently in the market.
The pricing method is the backward PDE introduced in Sect.4.3. The prices of the
three different models, as well as the market prices, are summarized in Table4.6.
The market prices are collected from Bloomberg. We can see that the LSV model
provides the prices which are closest to the market prices.

4.5 Conclusion and Future Works

In this paper, we detail our implementations of a Heston-type LSV model. The model
calibration is based on solving a Fokker—Planck Equation iteratively. For derivatives
pricing, both the backward PDE method and Forward Monte Carlo method are intro-
duced. In numerical results, the low calibration errors and relatively accurate pricing
results demonstrate the effectiveness of the methods presented in this paper. For
future works, the most important task is to improve the calibration stability. In our
implementations, we face the similar problem described in Ait (2013): the calibration
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Fig. 4.4 Time evolution of the transition probability
Table 4.6 Pricing results of reverse knock-out barrier options

Tenor Strike Barrier Heston LV LSV Market price

IM 1.1269 1.15 1430 962 1054 1035

M 1.1269 1.17 6001 5920 6072 5997

3M 1.1293 1.16 2262 922 1173 1087

3M 1.1293 1.2 10855 9287 9812 9901

6M 1.1331 1.19 6925 3328 4323 3883

6M 1.1331 1.24 16907 14170 15322 15102

1Y 1.1417 1.22 9787 4477 6103 5212

1Y 1.1417 1.3 25057 20601 22530 21936

becomes instable for large volatility-of-variance and longer maturity. Two ways are
supposed to improve the calibration stability: one is to add a zero-flux boundary
condition when solving the FPE (Lucic 2013; Gottker and Spanderen 2014); the
other is to perform forward induction of backward PDE (Andreasen and Huge 2010).
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Part 11
Credit Risk



Chapter 5

Estimating Distance-to-Default with

a Sector-Specific Liability Adjustment
via Sequential Monte Carlo

J.-C. Duan and W.-T. Wang

Abstract Distance-to-Default (DTD), a widely adopted corporate default predictor,
arises from the classical structural credit risk model of Merton (1974). The modern
way of estimating DTD applies the model on an observed time series of equity val-
ues along with the default point definition made popular by the commercial KMV
model. It is meant to be a default trigger level one year from the evaluation time, and is
assumed to be the short-term debt plus 50% of the long-term debt. This default point
assumption, however, leaves out other corporate liabilities, which can be substantial
and particularly so for financial firms. Duan et al. (2012) rectified it by adding other
liabilities after applying an unknown but estimable haircut. Typical DTD estimation
uses a one-year long daily time series. With at most four quarterly balance sheets, the
estimated haircut is bound to be highly unstable. Post-estimation averaging of the
haircuts being applied to a sector of firms is thus sensible for practical applications.
Instead of relying on post-estimation averaging, we assume a common haircut for
all firms in a sector and devise a novel density-tempered expanding-data sequen-
tial Monte Carlo method to jointly estimate this common and other firm-specific
parameters. Joint estimation is challenging due to a large number of parameters, but
the benefits are manifold, for example, rigorous statistical inference on the common
parameter becomes possible and estimates for asset correlations are a by-product.
Four industry groups of US firms in 2009 and 2014 are used to demonstrate this
estimation method. Our results suggest that this haircut is materially important, and
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varies over time and across industries; for example, the estimates are 78.97% in 2009
and 66.4% in 2014 for 40 randomly selected insurance firms, and 0.76% for all 31
engineering and construction and 83.92% for 40 randomly selected banks in 2014.

5.1 Introduction

Corporate credit risk is a common concern for all financial institutions due to their
natural exposures to firms through lending activities. From the perspective of banks,
the Basel Capital Accord and its compliance adds further importance to model-
ing credit risks. The investment community cares about corporate credit risk too
due to potential losses to their portfolios. Policy makers/regulators also pay a great
deal of attention to corporate credit risk because of the destabilizing effect on the
economy/markets when massive corporate defaults occur. Since the seminal credit
risk model of Merton (1974), viewing corporate capital structure as an option-like
arrangement has gained a wide acceptance in assessing corporate default probabil-
ities. Typically, fundamental information from the balance sheet and equity prices
from the stock market are utilized in estimating the model. A particularly important
risk measure out of Merton’s model is distance-to-default (DTD), whose practical
usage has been made popular by the commercial KMV model.

DTD is a widely adopted corporate default predictor. Its empirical estimate is
typically obtained by using an observed time series of equity values along with some
capital structure attributes. For practical applications, a typically complex capital
structure must be simplified. This is usually done through the default point definition
made popular by the KMV model. The default point is meant to be the default trigger
level one year from the evaluation time, and the KMV default point, according to
(Crosbie and Bohn, 2003), equals short-term debt plus 50% of the long-term debt.
This default point definition, however, leaves out a firm’s other liabilities, which can
be substantial and particularly so for financial firms. Duan et al. (2012) proposed to
add to the default point all remaining liabilities subject to a haircut, and estimated
this haircut by applying the transformed-data maximum likelihood method of Duan
(1994, 2000). In typical applications involving one-year long daily time series, only
four quarterly balance sheets are available, which offer limited information in identi-
fying the haircut. Thus, averaging the estimates for firms in the same corporate sector
and then applying the same haircut to all firms in a two-stage estimation seems to be
a sensible and practical solution. The two-stage approach has in fact been adopted by
the Credit Research Initiative’s live corporate default prediction system at the Risk
Management Institute, National University of Singapore.

We propose a density-tempered expanding-data sequential Monte Carlo (SMC)
method to estimate the haircut without relying on ad hoc averaging. This haircut is
estimated jointly along with all other parameters for individual firms in the same
corporate sector. This estimation task is technically challenging because of its high
dimensionality (easily over one hundred parameters). Our method progressively adds
a block of firms to the sample, and each time the likelihood function due to the
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additional data is density-tempered in a way that a somewhat arbitrary initial SMC
sample of the parameters for these additional firms can be brought through a sequence
of steps (reweighting, resampling and support boosting) to eventually arrive at a
sample of parameters representing the distribution implied by the target likelihood.

Our method combines the two recently emerged SMC techniques: (1) density-
tempered SMC by Del Moral et al. (2006) and Duan and Fulop (2015), and (2)
expanding-data SMC by Chopin et al. (2013) and Fulop and Li (2013). Our method
is not a simple combination of the two SMC techniques, however. Expanding data in
our context is to increase the number of firms as opposed to increasing the number
of observations on the same set of firms, and thus it is accompanied by an increase in
the number of parameters. The second key difference is our frequentist interpretation
of the estimation problem as in Chernozhukov and Hong (2003), and for which we in
effect assume an improper prior, meaning that all parameters are treated equally likely
before seeing the data. On the methodological front, our innovation is to do away
with the need for a prior distribution in the sequential technique, which is accom-
plished by introducing a somewhat arbitrary but sensible initialization sampler with
an analytical density function; for example, multivariate normal or truncated normal
when some parameters are subject to domain restrictions. The density associated
with this initialization sampler is then absorbed into the importance weight.

Joint estimation with this density-tempered expanding data SMC method is
demonstrated with four sectors of US firms (insurance, banks, airlines, and engi-
neering and construction) in 2009 and 2014, respectively. Our results suggest that
this haircut is materially important, for example, the estimate is 52.19% for all 37
Engineering and Constructions in 2009 and 83.92% for 40 randomly selected banks in
2014. Joint estimation also yields estimates materially different from those obtained
with the two-stage estimation method; for example, 92% for banks in 2009 under
the former versus 72.61% under the latter, and the difference is way outside the 95%
confidence interval obtained with the SMC method.

In addition to its methodological rigor, joint estimation has another advantage
of generating asset correlations among members of a corporate sector. For example,
banks and insurers show a significantly heightened level of asset correlations in 2009
as compared to 2014, which is consistent with 2009 being in the midst of a global
financial crisis. For the airlines and engineering and construction sectors, a similar
pattern exists but the magnitude of the difference in asset correlations are far less
pronounced.

The DTD estimates generated by the two-stage method are sometimes comparable
to those by our joint estimation method, for example, the engineering and construction
industry in both years. For banks, however, the DTDs from the two methods are quite
different. The magnitude aside, the correlations (Kendall or Pearson) between the
estimates of the DTDs from the two methods exceed 80% except for banks which
exhibit substantial but lower correlations as compared to other sectors.
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5.2 DTD Subject to a Sector-Specific Liability Adjustment

Typical DTD estimation using a time series of equity values is performed on a firm-
by-firm basis. If a corporate sector is to share a common parameter, estimation will
require one to stack together all equity time series in that sector in order to reflect asset
correlations among firms. To address asset correlations, we modify the Merton (1974)
model by incorporating a latent common risk factor for the sector. This modification
will, however, retain the Merton model’s original results on a firm-by-firm basis.

5.2.1 The Structural Credit Risk Model with a Common
Liability Adjustment

Let V;; be the unobserved asset value of firm i at time ¢. Per usual, it follows a
geometric Brownian motion, but we assume a common factor to allow for asset

correlations:
dVi,

Vi

= u;dt + ﬁ,‘dBIC + v;dB;; (5.1

where Bf and B, , are two independent standard Brownian motions, §; is the firm
specific coefficient used to capture how firm i responds to the common risk factor,
By, and v; is a volatility coefficient to reflect the idiosyncratic risk of firm i. The total
variance naturally becomes 0 = 37 + 1. Let F;, denote the default point at time
T below which firm i will default, and F;, is known at time ¢. The Merton (1974)
model gives rise to the following equity value of firm i:

Ei, =V, VW(di,) — F,e" " OW(d;, — VT — 1) (5.2)

where W (.) is the standard normal cumulative distribution function and

n(72)+(r+%) T -0

di = 53
! g; T —1t ( )
The time-¢ probability of default equals W (—DT D; ), where
. o?
n (5) + (= %) T =1
DTD;, = ' . 5.4

oiNT —t

The above DTD formula is, however, rarely used in practice because parameter
L is well known to be subject to huge sampling errors when daily time series
is used in estimation. A modified DTD formula avoiding u is typically used in
practice; for example, Crosbie and Bohn (2003) and Duan and Wang (2012). This



5 Estimating Distance-to-Default with a Sector-Specific ... 77

modified formula has also been adopted by the live corporate default prediction sys-
tem of the Credit Research Initiative at the Risk Management Institute, National
University of Singapore (NUS-RMI 2015). Specifically, this modified formula,
denoted by DTD" is:

DT D := % (5.5)

Following Duan et al. (2012), the default point is assumed to be sector-specific;
that is, F;, = SD;, + 0.5LD;,; + §OL;, where the the short term debt (SD; ) is
taken as total, the long term debt (LD;,) is halved, and other liabilities (OL;,)
is subject to a unknown haircut common to all firms in the industry sector. This
default point formula reduces to the KMV model’s default point definition when
0 = 0. The ideal behind the KMV default point is a recognition that the debts of a
firm typically cover a wide range of maturities, and a simple way of adapting the
reality to the single-maturity set-up of the Merton model is to apply a 50% haircut
to the longer-term debts. As noted in Duan et al. (2012) and further elaborated in
Duan and Wang (2012), financial firms tend to have an extremely large amount of
other liabilities vis-a-vis short-term and long-term debts (e.g., deposits for banks and
policy obligations for insurers can amount to about 80% of their total liabilities).
Thus, leaving other liabilities out of the default point will significantly distort the
DTD estimate. However, the appropriate haircut is unknown and has to be estimated.

Estimating a firm-specific d is not a sensible approach, because corporate balance
sheets are available at best quarterly. The typical application of using one-year time
series of daily equity values only offers three change points in liabilities, leading to a
highly noisy estimate of 5. Common ¢ for a corporate sector is obviously a sensible
compromise, but the joint estimation becomes too numerically challenging. Thus,
Duan et al. (2012) employed a two-stage approach, which first estimates § along
with other model parameters for each firm in a sector, then averages all § estimates
in the sector, and finally fixing at the average J, re-estimates other parameters for
each firm in the sector. As mentioned earlier, this two-stage approach has also been
adopted for the live corporate default prediction system maintained by the CRI team
at the Risk Management Institute, National University of Singapore. We show later
that joint estimation with all firms in a sector, instead of the two-stage approach, is
actually feasible by adapting the modern density-tempered SMC technique to this
specific estimation problem.

5.2.2 The Transformed-Data Likelihood

Duan (1994, 2000) proposed the transformed-data maximum likelihood estimation
method for estimating parameters using derivative contract while the asset values
are not directly observable. We apply the method to our joint estimation prob-
lem. Let ‘A/,-,t(a,-, 0) denote the implied asset value computed at (o;, ) using the
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observed equity value, E; ;, where the inverse exists and is unique, because Eq. (5.2)
is monotonically increasing in V; ;. By the process in Eq. (5.1), the N-firm one-period
joint distribution at time ¢ — 1 is of multivariate normality with mean vector ft;.y
and covariance matrix X .y 1:x:

B In )7]"(01’6) T
(Vl.r—l(Ul&S))

ln( AVZJ(UZ,(S)
V21020 " | ~ W (., v in). (5.6)

11’1( AVN.I(O-Nv(S) )

Vn.i—1(on,8) " ]
where
I B+ v} 2@522... 318y
My = e _ 2% and XYy 1N = ﬂz;ﬂl AR ﬂz:ﬁN
N _ 10% ﬂzv'ﬂ] By Bia 3 + A

Also evident from the above, changing the sign of {3;,i = 1,2---, N} all at once
will not change the density function of the above system. For identification, therefore,
one can impose a positive sign on any one of them, say, /31, as long as it is not equal
to zero.

As argued in Duan et al. (2012), a firm’s asset value may change dramatically
due to major investment and financing activities. Hence, the asset value implied
from the observed equity value is better standardized using the corresponding book
value of assets. This adjustment is to remove the scale effect so as to better capture
the dynamics for the assets in place instead of reacting to jumps caused by capi-
tal structure changes. Let W,J;N = [ln(\A/l,r(al, 0) /A1), ln(‘A/gy,(az, 0)/Az), -+,
ln(f/N,,(aN, 0)/An.)], where A;, is book asset value of firm i at time 7. The
transformed-data log-likelihood function can be derived by taking into account
the Jacobian of the transformation from equity value to asset value. We introduce
0:.; = {(tx, Be, vi), k =i, ---, j} to stand for the set of the firm-specific parame-
ters from Firm i to j inclusive. Note again that oy is a deduced parameter where
o2 = B+ 12.

For atime series sample of equity valueson N firmsovert = 1,2, --- , T, denoted
by E .y, the log-likelihood function is

InL@5,0:.5; E1.n)

_ _N(T— l)ln(27r)— T -1

In (det(X1.x))

A / A
(AWz,lzN - M];N) > hvan (AWz,l:N - HI;N)

|
| =
M~
)

N
[|
0
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T N

T
~ Y G Woiw = >0 > W (di (Vi (01, 0), Fiu@)00)  (57)
=2

t=2 i=1

In the above, we have made explicit some elements of the d;, function defined in
Eq. (5.3) so that it is understood as a function of those model parameters. Note that
AW, LN = W, LN — Wl 1.1:n; and 1y is an N-dimensional column vector of 1.
Note that directly inverting X';.y ;.x would create a heavy computational burden
when n is relatively large. Under our model specification, this matrix is easily invert-
ible with the Sherman—Morrison formula. Specifically, ¥ .y ;.5 can be decomposed

into the sum of a diagonal matrix A = diag( Vlz, R u]z\, ) and the outer product of
a column vector v = [y, ..., By | withitself. If 1 +v’A~'v # 0, then
) N1 = A vy A1
Zivaw = A+ o) = AT - e (5.8)

Missing data invariably occur in the real-life data sample. In our case, missing data
can occur due to some required items in the balance sheet are occasionally absent
or stock prices are not available for some firms at some time points. The likelihood
function in Eq.(5.7) can be modified to allow for missing data. Specifically, one
adjusts the number of firms, i.e., N, according to data availability at time ¢; for
example, there are s firms with missing data at time ¢. Once the remaining N — s
implied asset values are computed according to Eq. (5.2), the implied asset returns
of these firms again follows a multivariate normal distribution with an (N — s) sub-
vector of p,.y and an (N — ) sub-matrix of X';. ;.x. Since missing data may occur
differently over time, the adjustment to the likelihood function in Eq. (5.7) will have
to be time-dependent. To make the computer code run efficiently, it will be useful to
first sequence those firms without missing data and follow by those with missing data.
Particularly, firms with similar missing data patterns are better grouped together so
that the likelihood function of multiple firms can be evaluated in a larger time block.

5.3 Parameter Estimation by the Density-Tempered
Expanding-Data Sequential Monte Carlo

The number of parameters in the likelihood function can be quite large; for example,
there were 327 banks in the US in December 2009 giving rise to 982 parameters.
Even for the relatively small airlines industry, there were 12 firms in December 2014
totaling 37 parameters to be jointly estimated. The density-tempered expanding-data
SMC seems to be the only practical way for estimating such large systems.

Our density-tempered expanding-data SMC method combines the two recently
emerged SMC techniques: (1) density-tempered SMC by Del Moral et al. (2006)
and Duan and Fulop (2015), and (2) expanding-data SMC by Chopin et al. (2013)
and Fulop and Li (2013). The common thread in these methods is to find a bridge
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linking the prior to the posterior distribution in the Bayesian context of parameter
estimation. In the case of density-tempering, the likelihood is raised to a power
between 0 (corresponding to the prior) and 1 (corresponding to the posterior) so that
by applying a simple self-adapted control, one can sure-footedly migrate from a set of
parameter particles representing the prior to the final set of particles for the posterior.
The expanding-data SMC in the language of Duan and Fulop (2015), on the other
hand, creates a bridge by gradually adding data so that the sequence of intermediate
posteriors, represented by different sets of parameter particles and corresponding to
various intermediate likelihoods, eventually goes to the final posterior distribution. As
argued and demonstrated in Duan and Fulop (2015), density-tempering is a far more
stable SMC scheme than the expanding-data approach. In our case, expanding data
gradually is because handling a large number of firms all at once is not necessary and
in fact not ideal in the earlier stage of estimation due to the extra computational load
involved. By sequentially expanding the data set, one in effect only approximately
density-temper the incremental likelihood to ensure proper distribution migrations
along the way.

Our method is not a simple combination of the two SMC techniques. Expand-
ing data in our context is to increase the number of firms as opposed to increasing
the number of observations on the same set of firms, and thus it is accompanied
by an increase in the number of parameters. The second key difference is our fre-
quentest interpretation of the estimation problem, and for which we in effect assume
an improper prior, meaning that all parameters are treated equally likely before see-
ing the data. Our methodological innovation is to do away with the prior distribution,
and is done by introducing a somewhat arbitrary but sensible initial sampler with
an analytical density function; for example, multivariate normal or truncated nor-
mal when some parameters are subject to domain restrictions. The corresponding
methodological change needed is to replace the likelihood function, used in density-
tempering or expanding-data, with the ratio of the likelihood over the initialization
density.

We first define the log-likelihood function for the new firms conditional on the
firms already being added (N, < N,); that is,

InLEG, Oin,; Winsin, 2 =1, , T | Epy,)
(Ng — N)(T - 1) T -1

= 5 In(2m) —

1 < '
A -
) E (AWI,NS-H:N(, —Mr,NJH:N[,w\) 2 NN, N,

t

In (det(Z'NSH;N“N‘\.))

=2
(AWz,NﬂLl;Nq - Hr,NJ+1:Nq|NA)
N

T T q
=D Gy Wony, = > > W (d, (Vi (01,8), Fiu@).09))  (59)
=2
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where

_1 ~
Ho Ny 1N, IN, = B NN, T 2NN N E L 1 (AWt,I:NY - ”’r,l:Nl) (5.10)

-1 ’
ENJ--H:N(,lNX = Z‘N.,--H:NL,,N,\-H:N,, - Z‘N,\--H:N[,,I:N.,.21;1\/“1;1\1321\/»\.;_1;1\/{1,1;1\]l\_ (5-11)

The above two items are respectively the covariance matrix and mean vector
for the (N, — N,)-dimensional asset returns corresponding to the new firm block,
conditional on the asset returns of the existing N; firms.

Our model’s parameters can be divided into to two groups — common (i.e., J)
and firm-specific (i.e., 81.y). We are interested in the recursive exploration of the
sequence of intermediate distributions with the recursion associated with data expan-
sion and density-tempering. The initialization sampler’s density for the firm-specific
parameters from Firm i to j is denoted by /y(8;.;), whereas the one for the com-
mon parameter is denoted by Iy(§). For the first block of Ny firms, its initialization
sampler is independent of I5(§) so that the joint sampling density is 1o(6)Io(01:n,).
The intermediate distribution (up to a proportional constant) while tempering the
likelihood with ~y is defined as

L6, 018 Erny)

1o(6)Io(B1y,) ) x LN loO1n,).  (5.12)

Sniy (0,015 Ery,) o (

The term raised to power y on the right-hand side of (5.12) is nothing but the impor-
tance weight in a sampling sense. Different SMC schemes depart in how the impor-
tance weight is controlled so as to obtain a quality sample to represent the final
target distribution. Evidently, when v =0, fn, 0(d, 01.n,; E1.y,) is the initializa-
tion density. When v = 1, fy,1(5, O1.n,; E1.n,) = L0, 01:n,5 E1.n,), which is the
likelihood function, up to a proportional constant, for the data sample up to N,
firms.

When a new block of firms is added (taking from N; to N, firms), it will be more
efficient to take advantage of the knowledge about the common parameter already
implied by the first N, firms and the firm-specific parameters of these N, firms con-
ditional on the common parameter. In real applications, the common parameter, if it
were implied solely by the newly added firms, might be quite different from the com-
mon parameter suggested by the first N firms. When new firms are added, an ideal
re-initialization sampler for the common parameter and the firm-specific parameters
of the first N, firms will be a mixture distribution combining the updated distribution
revealed by these firms and the original initialization distribution. Specifically, we
use the mixture distribution: I_Y('")(é, 01.n,) = [AL(0) + (1 — N 1p(0)]L;(Oy.n, | 6)
where I;(0) and I;(6;.x, | §) denotes the distribution of the common parameter and
the firm-specific parameters conditional on the common parameter derived from the
SMC sample of the first N, firms. A natural way of sampling with the conditional
distribution, I;(01.5, | 9), is to run regressions of 8.y, on ¢ using the SMC sample
already obtained.
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The tempered distribution (up to a proportional constant) when reaching N; firms
(for s > 2) is defined as

N0, 01w, Evn,)
~ (5(5, O1.n, i Evny VLG, On, ran Won, st =1, T | El;Nv_l))7
Is(fl)(& 01.n,_ ) 1oOn,  +1:3,)
I (8, 01n, )o@y, 11.x,)- (5.13)

The initialization sampler for the firm-specific parameters associated with the newly
added firms naturally uses the original initialization sampler.

The terms raised to power -y on the right-hand side of (5.13) is again the importance
weight in a sampling sense, controlling sample migration from an initial distribution
to the target distribution. If one can obtain a simulated sample of parameter values
properly representing £(6, 01.5,; E1.n,), this Bayesian posterior with an improper
prior, i.e., the likelihood function, shall converge to the asymptotic distribution.
Hence, their sample means become the parameter estimates, and the confidence
intervals can be straightforwardly obtained. Alternatively, one can use the result of
Chernozhukov and Hong (2003) to justify the use of the SMC sample means and
covariances in inference because the information equality holds when the correctly
specified likelihood function is the target.

Advancing the tempered density will experience two cases. For the initial set
of firms (i.e., Nj), moving v to 1 can be accomplished by applying the following
incremental important weight:

2 1
,\,,( ),,),( )

(5.14)

S0, 01y, Eyy) ~ (5(5, 01.n,; EI:NI))
S0, 01ns Evny) INQINCIHD)

Advancing from N,_; to N; firms (s > 2) can be executed with the following incre-
mental importance weight:

Iy @O, 01y E1ng)

X
Iy 0 05 015 E1ing)
4@ )

(5.15)

L@ 01N, Eving )LG 0N, ving Wing 4ting (=1 T | Epyg )
IS@ 6, 01:n,_ ) oON,_ +1:N,)

While maintaining a minimum effective sample size by a self-adaptive control on
v, one must resample the parameters to even the important weights, and then follow
up with several Metroplis-Hastings (MH) moves to boost the empirical support that
has been reduced due to resampling. At any stage of (Nj, ~), the MH move targets
I (0, 01.n,; E1.y,) and replaces, if accepted, a subset of (d, 8.y,). In fact, we
need to run block MH moves, because proposing a good-quality parameter vector
of a very high dimension without dividing them into blocks would be difficult. We
first replace the common parameter, J, and then proceed to replace firm-specific
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parameters sequentially according to how blocks of firms are added. Suppose that
we have 23 firms and 5 firms are added at a time. The MH moves will comprise first
proposing ¢ for replacement, then 15 parameters associated with the first 5 firms,
then another 15 parameters for next 5 firms, and finally the last block of 9 parameters
for 3 firms.

We compute the realized acceptance rates for the common parameter and each
block of the firm-specific parameters after completing the MH move for the M
parameter particles. The MH move will be repeated for the common parameter and
blocks of firm-specific parameters, but a particular element (i.e., the common para-
meter or a block of firm-specific parameters) will be skipped when its cumulative
realized acceptance rate has reached a target level, say, 100%. This is to ensure that
the empirical support has been properly boosted but without running excessive MH
moves.

A suitable proposal sampler for the common parameter or any block of firm-
specific parameters is fairly easy to come by, and is typically of high quality. This
is because a sample of size, say, M representing fu, ,(0, 01.5,; E1.5,) is already
available. The proposal density for the common parameter, 4, is defined as a lin-
ear regression model with normally distributed errors on a subset of m parameters,
denoted by {0y, 0>, - - - , 0,,}, randomly selected from the firm-specific parameters,
6,.x,; that is, 0* is sampled based on the following regression model estimated to the
parameter sample of size M:

§=ap+ Y aj0;+e where e~ N(0,w). (5.16)

Jj=1

Naturally, a sampled § should be discarded if it is outside of the [0, 1] interval.

For the firm-specific parameters, the proposal sampler is based on a set of regres-
sion models. Consider replacing the firm-specific parameters of a block of firms from
N, + 1 to N, when the estimation has already been advanced to Ny firms. For each
k between N, 4+ 1 and N,, we use ¢ as regressor and estimate the following set of
regressions:

ti = bro+ br10 + €1
Bk = cro+ cr10 + €2k (5.17)
Vg = dro+di 10+ €3

where €] «, €2 and €3 ; are normally distributed with mean zeros and their covariance
matrix is computed from the regression residuals. Over different k’s, (€ ¢, €2, €3.%)
are treated as independent. In short, the proposal sampler takes the three firm-specific
parameters as correlated for a firm but independent across different firms in a replace-
ment block.

The regression parameters in effect define the proposal sampler, and these regres-
sion parameters are a function of the parameter sample of size M. So, we will use
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M g,., to stand for these sufficient statistics. The proposed new parameters are
denoted by (6%, 7. ). Since we only propose a subset each time, (0%, 7.y ) is same
as (9, 8.5,) except for a particular subset being proposed for replacement.

an, {0, O1.n,) = (0%, 07y}

) N (6%, 07.n 5 Evn,) h(0, 01y, )
= min{ 1, - (5.18)
fNS,",’((Sv 01:N57 ElZNS) h(a*’ 0];[\]3 ’M(S,e[;NA )

By the standard argument, the target intermediate distribution in (5.13) is the station-

ary solution to the Markov kernel defined by the above acceptance probability. Note

that we are using independent proposal, because M g, reflects the whole sample

of M parameter values as opposed to an individual element, (4, 8;.y,)-
Operationally speaking, the MH acceptance probability falls into one of two cases,

and each can be simplified differently.

Case (1): s = 1 when the operation is still on the first block of firms (i.e., 1 : N})
The first ratio in (5.18) can be expressed as

Fun (0%, 05y Ery) (5(5*,9?1\,]; E1:N1)) (10(5*)10(01N1))17(5 19)
le.,Wl (5,01;N1; EI:NI) »C((S» 0121\/1; EIZNI) 10(5)10(91:1\/]) ‘

Case (2): s > 2 when one adds another block of k firms (Ny, = Ny_; + k)
The first ratio in (5.18) can be expressed as

fN_r,v((S*v 0>1K;NS; Ei.n,)
46, 01N, Ern,)

* « . m * * * -
=(£(5,91:NS,E1:N3)) (1( 10", 8y, ) 1o(8) 1+1N)) (5.20)

L6, 01.n,; Er.n,) 16,015, ) 1o(On, ,+1:n.)

Some of the above ratios may be further simplified to speed up calculation by utilizing
the fact that 67, v, typically shares the same value with 0.y, over some initial segment
of variable length. Assume that the firm-specific parameters to be replaced corre-
sponds to the block of firms from N, + 1 to N,. Note that §* = 6, OT:NFI =01.n,-1,
and 0y, , .y = On,11.n,- Hence,

LG, Oy Ein)  LOE O W,y oyt =1 . T | Epy,)
L6, 01.n,; Ern,) LG, 01n; Win vt =1, , T | Epy,)

Finally, the second ratio in (5.18) in connection with the proposal density can
naturally be simplified because sampling is only for the firm-specific parameters
pertaining to a specific block of firms and the densities for the parameters outside
the block are never invoked.
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To summarize, the whole density-tempered expanding-data SMC algorithm along
with our specific implementation parameters goes as follows:

e Step 1: Initialization
Sample (§,i =1, 2, --- , M) according to the initialization density, Iy (J), which s
taken as a normal distribution with mean 0.5 and standard deviation 0.3, truncated
to [0,1]. Similarly, sample (BY:)NI ,i=1,2,---, M) for the first N; firms based
on Ip(0;.n,). We set the initial block size to 5 firms, i.e., Ny = 5. [p(O;.n,) is a
product of normal densities, and they are taken as i.i.d. across firms and over the
three firm-specific parameters of a firm. For p;, the mean and standard deviation are
set to 0.2 and 0.2, respectively. In the case of 3;, the mean and standard deviation
are 0.15 and 0.05. 3, is restricted to be positive because of the identification issue
discussed earlier in Sect. 2.2, and its sampling is carried out with a truncated normal
distribution. Finally for In 7;, the mean and standard deviation are set to In(0.1)
and 0.05, respectively. The initial sample is of course equally weighted, i.e., 1/M,
and M is set to 1,024.

e Step 2: Reweighting and resampling
Set v = 0. Start from j = 0 and compute the tempered incremental importance
weight:

269,09 B\

INON: 0] . s V1N B LN,

w”rﬂ’<-”(5 ) 01:N1) = ( - 0) )

10(5(1))10(01;1\1])

and find v* such that the Effective Sample Size (ESS) is no less than B where B is

set to M /2 = 512. This can be done with a simple grid search to find v* to meet

(w0 @60, ))2

Z?ilwfﬁ(/>(5m’9(li:)lvl) .

Resample with the incremental weights to obtain an equally weighted sample of
size M.

e Step 3: Support boosting
If ESS > 0.9M, this support boosting step will be skipped. Otherwise, apply the
Metropolis-Hastings (MH) move to remove duplicates so as to boost the empirical
support (i.e., increase the ESS). Block MH moves are run per the earlier discussion.
First, ¢ is replaced, and then firm-specific parameters 6.y, are replaced in blocks
with k firms at a time, and k is set to 5. Compute the realized acceptance rates (over
M) for the common parameter and different blocks of firm-specific parameters.
The MH move will be repeated for the common parameter and blocks of firm-
specific parameters, but a particular element (i.e., the common parameter or a
block of firm-specific parameters) will be skipped when its cumulative realized
acceptance rate has reached a target level of 100%.

e Step 4: Advance v to 1
Set yUTD = ~* With the support-boosted sample in place, one computes the
tempered incremental important weight and finds v* again as in Step 2. Reweight,

the condition, which need not be exact. Note that ESS =
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resample, and follow with support boosting according to the acceptance probability
in (5.18). Repeat the operations until reaching v = 1.
e Step 5: Add more firms

Add more firms to take from N,_; to N, where Ny = N;,_; + k and k is set to
5 unless less than 5 firms are left. Perform re-initialization by sampling  using
1 (8) = My_1(8) + (1 = M) Iop(6) and 0.y, , from I,_; (8., , | 6), where A is
set at 0.8 and I;_;(9) is similar to the truncated normal sampler used in the ini-
tialization, i.e., Iy(J), except for using the sample mean and variance of § in the
SMC sample up to N,_; firms. Sampling 0.y, , conditional on 5 relies on the
following three-dimensional multivariate regression:

0; = 7’j,0+7’j,15(i) +€j, where e ~ N(0,A;) and j =1,2,---, Ny_1.

Independence across firms is assumed for this sampler, which means I;,_(0.y,_, |
) is a product of N,_; three-dimensional multivariate normal densities. Again, /3
must be restricted to be positive for the identification purpose. Thus, 6. is treated
differently where its three elements are sampled only using their sample means
and covariances obtained from the previous stage so as to avoid the complication
arising from the point-specific truncation probability.

Finally, sample the additional parameters, (Oy, ,+1:n,,i = 1,2, -+, M), using the
initialization sampler Ip(@y, ,+1:n,), Which are normally distributed independent
across firms and over different parameters for a firm. Appenditto 8.y, , to become
0;.n,. Set v9 = 0. Start from j = 0, and compute the incremental important
weight as in Eq. (5.15):

Uy, y @, O(II:)NS) =

NG

£OD.00, By )LED, 0 i Wy pry, t =1 T | Ery,_)
16D 00 IO 1x,)

Find v* such that the ESS is no less than B, and follow with reweighting, resam-
pling and support boosting again. Repeat until reaching v = 1.

e Step 6: Repeat adding more firms
Repeat Step 5 to take Ny to Ny until finally reaching N firms.

5.4 Empirical Implementation

5.4.1 Data

We obtain the data from the RMI-CRI database (National University of Singapore,
Risk Management Institute, CRI database. Available at: http://rmicri.org [Accessed
August 2015]). The data include (1) the daily market capitalization based on closing
share price and number of shares outstanding on a subset of US firms in four sectors,


http://rmicri.org
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(2) the 3-month US Treasury interest rate series, and (3) the book values of assets and
liabilities (short-term, long-term and the remainder) from quarterly balance sheets for
these US firms. Share prices and interest rates are available daily, but balance sheets
are released quarterly. For a given day, the relevant items are taken from the most
recently available quarterly balance sheet. The firms are classified into 76 industry
groups by Bloomberg Industry Classification System (BICS). To demonstrate our
estimation method for the common liability adjustment factor (i.e., §), we select four
industry groups: Insurance (BICS 10008-20055), Banks (BICS 10008-20051), Air-
lines (BICS 10004-20018), and Engineering and Construction (BICS 10011-20082)
and focus on two years: 2009 and 2014. Our sample size is 250 daily observations
for each firm up to the end of the year. According to the § estimates produced by
the RMI-CRI system in its first stage of the two-stage estimation, these four indus-
try sectors show a range of §’s that helps in gaining a better understanding of our
proposed method.

Table 5.1 presents the capital structures of these four industry sectors in 2009 and
2014. The firms considered must have consecutive data for at least 22 days in a year.
The smallest number of firm is 12 for the airlines industry in 2014 whereas the largest
sector is banks with 327 firms in 2009. Evidently from this table, other liabilities
being left out of the KMV default point formula can be quite substantial, measured as
a fraction of total liabilities. This is particularly so for financial firms such as insurers
and banks with other liabilities being around 80% of the total liabilities. If the haircut,
i.e., 0, is not negligible, DTD of financial firms will be seriously distorted.

As Table 5.1 shows, there are many banks and insurers in their respective sectors.
In the following estimation, we randomly select 40 firms common to 2009 and
2014, and do so for each of these two sectors. In these cases, we in effect jointly

Table 5.1 Capital structure of four industry sectors of US firms

Airlines Engineering & Construction | Banks Insurance

2009 2014 2009 2014 2009 2014 2009 2014
# of firms 18 12 37 31 327 312 132 120
Average value
Market 1979.77 | 13428.39 | 1247.59 1950.87 3311.06 | 5826.30 | 4538.22 | 9657.12
capitalization
Short-term debt | 2317.60 4608.96 | 629.86 783.56 8657.02 | 9056.90 | 2433.34 | 3074.60
(SD)
Long-term debt | 3299.49 3863.44 | 152.52 502.10 6854.90 | 5607.53 | 2711.79 | 2110.10
(LD)
Other liabilities | 2673.93 3767.06 | 136.28 173.28 21408.08 | 29162.43 | 24998.16 | 34612.81
(OL)
Total liabilities | 8667.21 | 15495.66 | 1597.43 2300.46 40789.69 | 49114.01 | 35191.69 | 47934.07
(TL)
Total assets 8291.01 |12239.46 918.66 1458.94 36920.00 | 43826.85 | 30143.29 | 39797.51
(TA)

OL/TL 24.10% | 23.34% 11.32% 11.72% 83.84% | 89.06% | 79.16% | 78.80%
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estimate 121 parameters (1 common plus 40 sets of 3 firm-specific parameters for
each firm). Going all the way to jointly estimate using, say, 327 banks in 2009
(close to 1,000 parameters) would be methodologically feasible, but would require
a GPU parallel computing implementation to complete the estimation task within a
reasonable amount of time.

5.4.2 Results

Table 5.2 presents the results of comparing the estimated haircuts from the density-
tempered expanding-data SMC method with those from the two-stage approach. The
number of firms refers to the firms used in the joint estimation, not the total number
of firms in that sector; for example, banks and insurers are capped at 40. The data
missing rate is computed as the ratio of the number of missing day-firm observations
over the maximum number of day-firms in a particular year. Missing data causes
some algorithmic complications. One missing equity value, for example, results in
two consecutive missing returns. Missing returns can be easily handled when a single
firm is involved. Jointly estimating all firms in a sector as in this paper requires making
adjustments to the conditioning set along the time dimension in order to evaluate the
conditional likelihood function in Eq.(5.9). To improve computational efficiency,
one needs to arrange firms with similar missing data patterns into the same group,
and then leaves groups with more missing data to later processing in the sequential
optimization scheme.

For the two-stage estimation, the average § of a sector is computed over the firms
in a sector (or 40 firms in the banking or insurance sector) with the haircut values
generated by RMI-CRI in its first stage of the two-stage estimation. Also reported
and labelled as “Used by CRI” are the haircut actually employed by the RMI-CRI
live system, which are averages over a very broad division into financial and non-

Table 5.2 The haircut parameter, J, for four industry sectors in 2009 and 2014

Airlines Engineering & Construction | Banks Insurance

2009 2014 2009 2014 2009 2014 2009 2014
#of firms used in | 18 12 37 31 40 40 40 40
estimation
Missing data rate | 3.64% 1.93% 1.48% 1.26% 7.53% 6.69% 0.96% 0.18%
Two-stage estimation
Average over firms| 0.3493 | 0.3666 0.5990 0.5009 0.7261 | 0.6667 | 0.6262 | 0.3136
Used by RMI-CRI | 0.5671 0.3537 0.5671 0.3537 0.6898 | 0.5417 | 0.6898 | 0.5417
Joint estimation by SMC
Mean 0.1693 | 0.0074 0.5219 0.0076 0.9200 |0.8392 |0.7897 | 0.6640
(X 0.0826 | 0.0002 0.2847 0.0002 0.8532 | 0.8170 | 0.7479 | 0.6257

Q975 0.2527 | 0.0251 0.7450 0.0277 0.9856 |0.8627 |0.8356 |0.6985
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financial sectors as opposed to more specific sub-sectors used in this study. The
joint estimation results reported in the same table provide the point estimates for
the haircut for different sectors in 2009 and 2014. Also presented in the table are
upper and lower values of the 95% confidence interval. These confidence intervals
suggest that only engineering and construction sector has their estimated haircuts
in 2009 from the two-stage method to be statistically indistinguishable from their
corresponding haircuts obtained under the joint estimation method.

Table 5.3 is used to highlight the difference in the firm-specific parameters. For
the two-stage estimation method, there are only two parameters (u and o), and their
sector average values in 2009 and 2014 are reported. In contrast, the joint estimation
method yields § and v estimates in addition to u. Note that 5 and v can be combined

Table 5.3 Firm-specific parameters for four industry sectors in 2009 and 2014

Aiirlines Engineering & Construction | Banks Insurance

2009 [2014 2009 | 2014 2009 2014 2009 2014
Two-stage estimation
1w 0.0972 0.1527 0.1271 —0.0597 —0.0528 0.0084 | —0.0273 | —0.0226
o 0.2722 0.2295 0.4631 0.2893 0.1258 0.0618 0.1963 0.1188
Joint estimation by SMC
s
Mean 0.2548 0.1610 0.3405 0.0223 0.6243 0.0081 0.0795 0.0091
Median 0.2364 0.2384 0.1903 0.0368 0.2449 0.0117 0.0355 0.0101
Min —0.0056 | —0.3828 | —0.2527 —0.3455 —0.1439 | —0.0948 | —0.0776 | —0.1247
Max 0.5785 0.5093 2.8807 0.5819 3.0980 0.1101 0.7667 0.2155
B
Mean 0.3719 0.1584 0.1989 0.1248 0.7237 0.0256 0.1624 0.0574
Median 0.3644 0.1710 0.2156 0.1343 0.4694 0.0271 0.1352 0.0455
Min 0.0164 0.0677 | —0.1017 0.0227 —0.2294 | —0.0048 0.0657 0.0123
Max 0.6770 0.2732 0.3928 0.2272 2.6869 0.0900 0.5246 0.1648
v
Mean 0.2480 0.1781 0.4041 0.2567 0.2361 0.0392 0.1508 0.0959
Median 0.2095 0.1392 0.3221 0.2100 0.1560 0.0315 0.0860 0.0650
Min 0.1181 0.1066 0.1305 0.0957 0.0523 0.0199 0.0404 0.0114
Max 0.5752 0.3404 1.3683 0.9328 1.0132 0.1143 0.4923 0.6636
Asset volatility: o = \//32 +12
Mean 0.4717 0.2431 0.4809 0.2952 0.7821 0.0492 0.2308 0.1142
Median 0.4738 0.2246 0.3889 0.2639 0.4971 0.0445 0.1735 0.0803
Min 0.2314 0.1362 0.2158 0.1150 0.0679 0.0267 0.1007 0.0167
Max 0.7087 0.3988 1.3721 0.9362 2.8716 0.1455 0.7130 0.6838
Asset correlation
Mean 0.6096 0.4310 0.2627 0.2375 0.7055 0.2476 0.5828 0.3557
Median 0.6870 0.4066 0.2613 0.2273 0.8217 0.2111 0.5986 0.3465
Min 0.0186 0.1815 | —0.0641 0.0032 —0.8382 | —0.0895 0.0517 0.0737
Max 0.9261 0.6897 0.7452 0.6323 0.9782 0.7290 0.8768 0.7298
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to produce o estimate and also asset correlations. For some sectors, two methods
yield distinctively different o estimates; for example, airlines and banks in 2009. In
general, the o estimates by the joint estimation method are higher than those obtained
by the two-stage method. The summary statistics on asset correlations suggest that
asset were much more correlated in 2009 as compared to 2014. This is in agreement
with the common perception of increased correlations during the 2008-2009 global
financial crisis period.

Table 5.4 summarizes the DTDs generated by two estimation methods for the four
sectors in 2009 and 2014. The DTD estimates generated by the two-stage method are
in some cases comparable to those by the joint estimation method; for example, the
engineering and construction industry in both years. For banks, however, the DTD
estimates from the two methods are quite different. Generally speaking, the two-stage
method yields higher DTD estimates for all sectors in 2009, when markets were more
volatile then. A higher DTD implies a higher solvency, and thus the two-stage method
leads to a conclusion that firms were safer than they actually were. The magnitude
aside, Kendall’s 7 or Pearson correlation of the two set of DTD estimates exceed
80% except for banks. The correlations for banks are much lower in magnitude but
still substantial. Take together, we can conclude that the DTDs from two estimation
methods are materially different. When used as a default predictor in a reduced-form
model, different estimation methods likely yield different prediction performances.
It is reasonable to conjecture that the joint estimation will generate a better default
predictor, either judging intuitively from its characteristics over the financial crisis
period or simply based on its methodological rigor.

Table 5.4 DTD comparison for four industry sectors in 2009 and 2014

Airlines Engineering & Construction Banks Insurance

2009 2014 2009 2014 2009 2014 2009 2014
Two-stage estimation (RMI-CRI values)
Mean 1.5749 | 4.6966 2.7687 4.4324 0.8708 | 4.1698 2.2356 5.9887
Median 1.4447 | 4.2140 3.0445 3.9109 0.8303 | 4.1269 2.4128 5.5646
Min —0.7147 | 2.8421 —0.0122 0.5205 —1.2278 | 0.9697 —0.4286 2.4827
Max 4.0182 | 7.4182 6.0303 12.8785 3.0753 | 7.8429 6.9532 | 11.3443
Joint estimation by SMC
Mean 0.8738 | 4.7830 2.6743 4.1897 —0.3748 | 3.8005 1.7170 5.5910
Median 0.6886 | 4.4713 2.8580 3.6562 —0.5219 | 3.8501 1.9077 5.0447
Min —0.7657 | 2.8093 —0.0433 0.4990 —1.4501 | 0.8166 —0.6529 2.3012
Max 3.2526 | 7.6093 5.8595 13.1316 2.0759 | 6.5182 6.3411 | 10.1488

Correlation of the two methods
Kendall 0.8382 | 0.9091 0.9670 0.9901 0.6410 | 0.8063 0.9190 0.9568
Pearson 0.9635 |0.9944 0.9992 0.9988 0.7841 | 0.9681 0.9889 0.9972
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Chapter 6
Risk Measurement with Spectral Capital
Allocation

L. Overbeck and M. Sokolova

Abstract Spectral risk measures provide the framework to formulate the risk aver-
sion of a firm specifically for each quantile of the loss distribution of a portfolio. More
precisely the risk aversion is codified in a weight function, weighting each quantile.
Since the basic coherent building blocks of spectral risk measures are expected
shortfall measures, the most intuitive approach comes from combinations of those.
For investment decisions the marginal risk or the capital allocation is the sensible
approach. Since spectral risk measures are coherent there exists also a sensible capi-
tal allocation based on the notion of derivatives or more in the light of the coherency
approach as an expectation under a generalized maximal scenario.

6.1 Introduction

Portfolio modeling has two main objectives: the quantification of portfolio risk, which
is usually expressed as the economic capital of the portfolio, and its allocation to
subportfolios and individual transactions. The standard approach in credit portfolio
modeling is to define the economic capital in terms of a quantile of the portfolio loss
distribution

qu(L) = F[ (@)

The capital charge of an individual transaction is traditionally based on a covariance
technique and called volatility contribution. We refer to Bluhm et al. (2002) for a
survey on credit portfolio modeling and capital allocation.
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Since the work by Artzner et al. (1997) coherent risk measures are discussed
intensively in finance and risk management. More recent is the question of a more
coherent capital allocation. Especially the use of expected shortfall allocation as
an allocation rule is recommend in Overbeck (2000), Denault (2001), Bluhm et al.
(2002), Kurth and Tasche (2003) and Kalkbrener et al. (2004).

Expected shortfall measures

1
ES,(L) = %/ qu(L)du

are the building blocks of more general coherent risk measures, the spectral risk
measure p. These are convex mixtures of expected shortfall measures. They can be
represented by their spectral measure p through

p=lpu :/0 ESy(1 — a)pu(da) (6.1)

or as a weighted sum of quantiles with w(a) = w([0, «]),

1
P = Pu= Pu =/) go(w(a)da. (6.2)
C

In this paper we apply the allocation rules associated with a spectral risk measure to
a credit portfolio and point out, which consequences to risk management the choice
of the weight function w, the spectral measure & or the measure

A€ - opda),

which we call mixing measure and thought to be the most easily one to calibrate
and implement. The theoretical basis of the approach can be found in the basic
papers Kalkbrener (2002), Kalkbrener et al. (2004) and the explicit application to
spectral capital allocation is provided by Overbeck (2004). We will first present the
theoretical foundation of the proposed risk and allocation measures and then discuss
general impact of the choice of the weight or mixing function and finally exhibits
the differences on a concrete credit portfolio example.

6.2 Review of Coherent Risk Measures and Allocation

6.2.1 Coherent Risk Measures

It is well-known that the following four conditions define a coherent risk measure,
Artzner et al. (1997, 1999), Delbaen (2000).
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Formally, a risk measure is nothing else as a positive real valued function r defined
on the set of random variable (potential losses) V. The number 7 (X) denotes the risk
in portfolio X. r is called coherent if it obeys the following 4 rules.

(-] Subadditivity (Diversification)
r(X+Y)<r(X)+r@{)
(] Positive homogenous (Scaling)
r(aX)=ar(X),a >0
(] Monotone

r(X) <r(Y)if X <Y (almost surely)

] Translation property
r(X4+a)=r(X)—a

Convex analysis gives already that a sub-additive positive homogenous function r
can be point wise written as the maximal value of all linear functions which are below
r (Delbaen 2000; Kalkbrener 2002; Kalkbrener et al. 2004). For risk measures this
means that the first two axioms above lead to the following representation

r(X) = max{l(X)|l < r, [ linear function} (6.3)

The risk measure evaluate at a loss variable X takes the same value as the largest
value of all linear function which lies below r on V evaluated on X.

Conceptually, this is similar to the gradient of the function r evaluated at the point
X or as the best linear approximation of » which coincides with r at the point X. We
will later see that this intuition gives rise to a sensible capital allocation.

A typical linear function for random variable is the expectation operator. Hence
the basic result by Artzner et al. (1997), Delbaen (2000)

r(X) = sup{Ep[X]|Q € Q} (6.4)

Q, = 9,, asuitable set of probability measures of absolutely continuous probability
measures Q << P with density d Q/d P, is similar to the representation (6.3).

The set Q is called the generalized scenarios associated with r. If the supremum
is actually taken at some probability measure, this probability measure or its density
with respect to P is called the generalized scenario associated with r. These approach
also fits into the intuitive feature of risk measurement, namely scenario or stress
analysis. For the interpretation in terms of scenarios the formulation with probability
measure is more natural, but for the axiomatic approach to capital allocation the
representation (6.3) is very useful.
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The currently most prominent example of a coherent risk measure is Expected
Shortfall (sometimes called Conditional VaR /tail conditional expectation). It is
denoted by ES, and measures the average loss above the «-quantile of the loss
distribution. The associated generalized scenarios can be explained as follows:

To each loss variable Y define the scenario as the “historical” calibrated objective
scenario constraint on the condition that the loss variable exceeded its quantile. The
expected shortfall coincides with the largest mean loss in these scenarios. Intuitively,

E{L|L > go(L)} = max{E{L|Y > g,(Y)}|all Y € Ly}

Even if generalized scenarios are defined as a supremum, in the case of Expected
Shortfall we can identify the density of the maximal “scenario”. For this we need
the formally correct definition of Expected Shortfall at level . The problem with
the intuitive definition above is the possible positive mass at the quantile itself. The
exact definition of the Expected Shortfall at level « is therefore Acerbi and Tasche
(2002), Kalkbrener et al. (2004):

Definition 6.1

ES,(L)E(1 =)  EILHL > qu(L)}] + qu(L) - [P(L < qu (L)} — al).

Here we take the quantile defined by
qu(L) = inf{x|P(L = x) = u}

the smallest u-quantile

Since ESy (L) = E{L4o (L)} with the function

9N E(1 =)™ [I{Y > qu(V)} + By 1Y = qu(N)}], (6.5)

where By is a real number and

g, 4 PV = 6u(1) —a
TP = ()

if P{Y =q,(Y)} > 0.

the density of the associated maximal scenario turns out to be the function g,. Note
that ES,(Y) = E{Y - g(Y)}and ES,(X) > E{X - g(Y)} forevery X, Y € V.
6.2.2 Spectral Risk Measures

For the interpretation of this density function (6.5) in terms of risk aversion as outlined
in Acerbi (2002), let us reformulate the expected shortfall as an integral over the
quantile function, the inverse of the distribution of L. It is well-known that
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1
ES,(L)=(1— ot)_l/ qu(L)du.

The implicit risk aversion with expected shortfall is, that all quantiles below o or
all losses below the o quantile have no weights, i.e. there is no risk aversion and all
losses above the «-quantile have the same risk aversion. Therefore the risk aversion
weight function associated with ES, turns out to be

wgs, W) = (1 —a) ' > a). (6.6)

From a risk management point of view there might be many other weights given to
some confidence levels u. If the weight function is increasing, which is reasonable
since higher losses should have larger risk aversion weight, then we arrive at spectral
risk measures.

Definition 6.2 Letw be an increasing function from [0, 1] such that fol wu)du =1,
then the map r,, defined by

1
rw(L) =/ w(u)qu(L)du
0

is called a spectral risk measure with weight function w.

The name spectral risk measure comes from the representation

1

1y (X) =/ ESy(1 — o) py(da) (6.7)
0

with the spectral measure 1 ([0, b]) = w(b). (6.8)

This representation is very useful when we want to find the scenario function repre-
senting a spectral risk measure r,.

Proposition 6.1 The density of the scenario associated with the risk measure equals

def def

1
Lo gu(r)® / 9e(L)(1 — a)(da). 6.9)
0

Here g (L) is defined in formula (6.5). In particular

ru(L) = E(LLy) (6.10)
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Proof We have

1
ro(L) = / ESu(L)(1 — a)p(da)
0
1
_ / E(LL.)(1 — a)u(dar)
0

1
_ / max[E{Lga (V))]Y € Locl(l — a)(da)
0

1 1
> max |:/ E [L/ ga(Y)(1 — oz),u(da)] Y € Looi|
0 0

= maX[E{ng(Y)HVY € Loo]
> E{Lg, (L)}

Hence

ro(L) = max[E{Lg, (Y)}IVY € L] = E{Lgw (L)}

6.2.3 Coherent Allocation Measures

Starting with the representation (6.3) one can now find for each Y a linear function
hy = h', which satisfies

r(Y) = hy(Y)and hy(X) <r(X), VX. (6.11)
A “diversifying” capital allocation associated with r is given by
A (X, Y) = hy(X). (6.12)

The function A, is then linear in the first variable and diversifying in the sense that
the capital allocated to a portfolio X is always bounded by the capital of X viewed
as its own subportfolio

AX, Y) < AX, X).

A (X, X)canbe called the standalone capital or risk measure of X. In general we have
the following two results: A linear and diversifying capital allocation A, which is
continuous, i.e. limo A(X, ¥ + €X) = A(X, Y)VX, at a portfolio Y, is uniquely
determined by its associated risk measure, i.e. the diagonal values of A. More specif-
ically, given the portfolio Y then the capital allocated to a subportfolio X of Y is the
derivative of the associated risk measure p at Y in the direction of X.
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Proposition 6.2 Let A be a linear, diversifying capital allocation. If A is continuous
atY € V thenforall X € V

r(Y +€eX) — p(¥)
- .

A(X. ) = lim

The following proposition states the equivalence between positively homogeneous,
sub-additive risk measures and linear, diversifying capital allocations.

Proposition 6.3 (a) If there exists a linear, diversifying capital allocation A with
associated risk measure r, i.e. r(X) = A(X, X), then r is positively homoge-
neous and sub-additive.

(b) If ris positively homogeneous and sub-additive then A, as defined in (6.12) is a
linear, diversifying capital allocation with associated risk measure r.

6.2.4 Spectral Allocation Measures

Since in the case of spectral risk measures r,, the maximal linear functional in (6.11)
can be identified as an integration with respect to the probability measure with den-
sity (6.9) from Proposition 6.1, we obtain hy(X) = E{X g, (Y)} and therefore the
following capital allocation

1
Aw(X, Y) = E{Xgu(Y)} =/ ESCy(X, V)1 —o)u(da)  (6.13)
0

1
=/ ESCy(X, YV)i(do) (6.14)

0
where ESCy(X, Y) = E{Xg,(Y)} (6.15)
is the Expected Shortfall Contribution and f is defined in (6.16). Intuitively, the

capital allocated to transaction or subportfolio X in a portfolio Y equalsits expectation
under the generalized maximal scenario associated with w.

6.3 Weight Function and Mixing Measure

One might try to base the calibration or determination of the spectral risk measure
based on the spectral measure p or the weight function w. Since the weight function
w is nothing else as the distribution function of u, there is also a 1-1 correspondence
to the more intuitive mixing measure

pda) = (1 —a)u(da). (6.16)
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If we define more generally for an arbitrary measure ji the functional

1
,5:/ ES,fi(da) 6.17)
0

then p is coherent iff /i is a probability measure. Since

1
1 = Ao, 11 =/ (1 — w)pe(du)
0

1l 1 pl
:/ / 1{u, 1](v)dv,u(du):/ / 110, v](u) pu(du)dv
o Jo o Jo
1

= / w(v)dv.
0

If we have now a probability measure /& on [0, 1] the representing u and w in (6.1),
(6.2) can be obtained by

d 1
e _ (6.18)
di l—«
b
w(b) = u([0, b]) =/ 1—/1(61&)- (6.19)
0 —
6.4 Risk Aversion
If we assume a discrete measure
A= pibai (6.20)
i=1

then the risk aversion function w is an increasing step function with step size of
pi/(1 — «;) at the points «;

This has to be kept in mind. If we assume equal weights for the two expected shortfall
at 99 and 90% then the increase in risk aversion at the first quantile 90%is 0.5/0.1 = 5
and 0.5/0.01 = 50. The risk aversion against losses above the 99% is therefore 11
times higher than against those between the 90 and 99% quantile. It is therefore
sensible to assume quite small weights on E'S,, with large as.
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6.5 Implementation

There are several ways to implement a spectral contribution in a portfolio model.
According to Acerbi (2002) a Monte-Carlo-based implementation of the spectral
risk measure would work as follows:

Let L" be the n-th realization of the portfolio loss. If we have generated N loss
distribution scenario, let us denote by n: N index of the n-th largest loss which itself
is then denote by L™V je.theindices1: N,2:N,....N: N € N are defined by the
property that

L'V < LN < < LNV

The approximative spectral risk measure is then defined by

N

N
> L Nw(n/N)/ D wik/N)
k=1

n=1 =

Therefore a natural way to approximate the spectral contribution of another random
variable L;, which specifically might be a transaction in the portfolio represented by
L or a subportfolio of L, is

N

Z L;z:N Iz,'v(n/N) ’ 6.22)
n=1 D= wk/N)

where L"" denotes the loss in transaction i in the scenario n : N, i.e. in the scenario
where the portfolio loss was the n-th largest. It is then expected that

N
, wn_ W0/N)
S = 2T gy
n=1 =

As in most applications we assume that
L=>"L
i

with the transaction loss variable L; and in the example later we will actually calculate
within a multi-factor Merton-type credit portfolio model.
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6.5.1 Mixing Representation

Let us review the standard implementation of the expected shortfall contribution.
In the setting of the previous setting we can see that for w(u) = ﬁ [, 1](u) the
weights for all scenarios with §; < « is 0 and for all others it is

1

1—«
Zk:{(a)N}ﬁ
N 1
- (1—-—a)N

(Here [-] denote the Gauss brackets.) Therefore the expected shortfall contribution
equals

N

1 n:N
—om 2 - o

n=(an)

or more intuitively the average of the counterparty i losses in all scenarios where the
portfolio losses was higher or equal than the [e N] largest portfolio loss.

Due to the fact that we have chosen a finite convex combination of Expected
Shortfall, i.e. the mixing measure

K
ldu) = pid,
k=1

and formulae (6.23) and (6.17) we will take for a transaction Li the approximation

K N

1 n:N
SCA(L17 L)vecp, veca, N — Z Di m Z Li (624)
k=1 ! n=[a; N]

as the Spectral Capital Allocation with discrete mmixing measure represented by the
vectors vecp = (py, ..., px), veca = («y, ..., ak) for a Monte- Carlo-Sample of
length N.

6.5.2 Density Representation

Another possibility is to rely on the approximation of the Expected Shortfall Contri-
bution as in Kalkbrener et al. (2004) and to integrate over the spectral measure f:
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N

1 .
E(L;L,) = li pov_ Wel/N) d 6.25
(LiLy) = lim_ i ‘Z:} sy wa(k/N)< @) t iu(da) (6.25)

If L has a continuous distribution than we have that
1
E(LiLy) = EIL; | Lau(dw)
0

1
=/0 EIL (L > gu(D)})(1 — ) u(da)

N 1

= lim N7'>" L;?/ HL" > go(L)}(1 — ) ' pu(da)  (6.26)
N—o00 - 0

If L has not a continuous distribution we have to use the density function (6.9) and

might approximate the spectral contribution by

N
E(LiLy) ~ N7' D Ligu(L"). (6.27)
n=1

The actual calculation of the density g,, in (6.27) might be quite involved. On the
other hand the integration with respect to w in (6.25) and (6.26) is also not easy. If w is
a step function as in the example 1 above, then p is a sum of weighted Dirac-measure
and the implementation of spectral risk measure as in (6.22) is straightforward.

6.6 Credit Portfolio Model

In the examples below we apply the presented concepts to a standard default only
type model with a normal copula based on an industry and region factor model, with
27 factors mainly based on MSCI equity indices. We assume fixed recovery and
exposure-at-default. For a specification of such a model, we could refer to Bluhm
et al. (2002) or other text books on credit risk modeling.

6.7 Examples

6.7.1 Weighting Scheme

Lets take 5 quantile 50, 90, 95, 99, 99.9% and the 99.98% quantile. We like now to
find weighting scheme for Expected Shortfall, which still gives a nice risk aversion
function. Or inversely we start with a sensible risk aversion as in (6.28) and then
solve for the suitable convex combination of expected shortfall measures.



104 L. Overbeck and M. Sokolova

As afirst step in the application of spectral risk measures one might think to give to
different loss probability levels different weight. This is a straightforward extension
of expected shortfall. One might view Expected Shortfall at the 99%-level view as a
risk aversion which ignores losses below the 99%-quantile and all losses above the
99%-quantile have the same influence. From an investors point of view this means
that only senior debts are cushioned by risk capital. One might on the other hand also
be aware of losses which occur more frequently, but of course with a lower aversion
than those appearing rarely.

As a concrete example one might set that losses up to the 50% confidence level
should have zero weights, losses between 50 and 99% should have a weight wy and
losses above the 99%-quantile should have a weight of k;w and above the 99.9%
quantile it should have a weight of k,wq. The first tranch from 50 to 99% correspond
to an investor in junior debt, and the tranch from 99 to 99.9% to a senior investor and
above the 99.9% a super senior investor or the regulators are concerned. This gives
a step function for w:

w(u) = wel(0.99 > u > 0.5) + kjwl1(0.999 > u > 0.99)
+ kwol(1 > u > 0.999) (6.28)

The parameter wy should be chosen such that the integral over w is still 1.

6.7.2 Concrete Example

The portfolio consists of 279 assets with total notional EUR 13.7bn and the following
industry and regions breakdown:

The portfolio correlation structure is obtained from the R? and the correlation
structure of the industry and regional factors. The R is the R? of the one-dimensional
regression of the asset returns with respect to its composite factor, modeled as the
sum of industry and country factor. The underlying factor model is based on 24
MSCI Industries and 7 MSCI Regions (Fig. 6.1). The weighted average R? is 0.5327
(Fig.6.2).

The risk contributions are calculated at quantiles 50, 90, 95, 99, 99.9 and 99.98%.

Figure 6.3 shows the total Expected Shortfall Contributions allocated to the indus-
tries normalized with respect to automobile industry risk contributions and ordered
by ESC99%.

In order to capture all risks of the portfolio a risk measure, which combines few
quantile levels, is needed. As one can see, Hardware and Materials have mainly tail
exposure (largest consumption of ESC at the 99.98%-quantile), where Transporta-
tion, Diversified Finance and Sovereign have the second to fourth largest consumption
of ESC at the 50%-quantile, i.e. are considerable more exposed to events happening
roughly every second year as Hardware and Materials.
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The spectral risk measure as a convex combination of Expected Shortfall risk
measures at the following quantiles 50, 90, 95, 99, 99.9 and 99.98% can capture both
effects, at the tail and at the median of the loss distribution.

Four spectral risk measures are calculated. The first three are calibrated in terms
of increase of the risk aversion function at each considered quantile as in Fig. 6.4.
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Fig. 6.5 Risk aversion when the weights are directly set to 0.1 at the 50, 90, 95%-quantiles, 0.15
at the 99 and 99.9%-quantiles and 0.4 at the 99.98%-quantile. @ XFGriskaversion2

The least conservative one is “SCA - decreasing steps” in which the risk aversion
increases at each quantile by half the size it has increased at the quantile before. “SCA
-equal steps” increases in risk aversion by the same amount at each quantile, “SCA
-increasing steps” increases in risk aversion at each quantile by doubling the increase
at each quantile. The last most conservative one is SCA - 0.1/0.1/0.1/0.15/0.15/0.4,
in which the weights of i are directly set to 0.1 at the 50, 90, 95%-quantiles, 0.15
at the 99 and 99.9%-quantiles and 0.4 at the 99.98%-quantile as in Fig.6.5. The last
one has a very steep increase in the risk aversion at the extreme quantiles.

As a comparison to the expected shortfall, the chart below shows the Spectral risk
allocation allocated to industries ordered by SCA - equal steps and normalized with
respect to automobile industry SCA as in Fig. 6.6.

All tables so far were based on the risk allocated to the industries. Much of the
displayed effects are just driven by exposure, i.e. “Automotive” is by far the largest
exposure in that portfolio and all sensible risk measure should mirror this concen-
tration. Interestingly enough the most tail emphasizing measures are the exceptions.
There the largest contributors Hardware and Materials have actually less than 10%
of the entire exposure.

Usually one uses as well percentage figures and risk return figures for portfolio
management. On the chart “RC/TRC” the percentage of total risk (TRC) allocated
to the specific industries is displayed in Fig.6.7.

For the risk management Fig. 6.8 showing allocated risk capital per exposure is
very useful. It compares the riskiness of the industry normalized by their exposure.
Intuitively it means that if you increase the exposure in “transportation” by a small
amount like 100.000 Euro than the additionally capital measured by SCA-increasing


https://github.com/QuantLet/XFG-ToDo/blob/master/_Done/XFGriskaversion2

108 L. Overbeck and M. Sokolova

Spectral Capital Allocation
T T

Automobile&Compo
Sovereign

Capital Goods
Diversified Fin
Transportation
Malerials
Hardware&Equipment
Retailing

Energy

Consumer Services
Telecom

Insurance

Ulilties

Banks
Food&Bev&Tobacco
Media
Durables&Apparel
Pharmaceuticals
Food&Staple Retl
Commercial Services

1 1 1 e 1

0 02 0.4 0.6 0.8 1 1.2
Percent

[ B sca [ SCA - increasing steps [ SCA - equal steps [_1SCA - decreasing steps

Fig. 6.6 Different risk contributions with respect to different SCA methods

Automobile&Compo
Sovereign

Capital Goods
Diversified Fin
Transportation
Materials
Hardware&Equipment
Retailing

Energy

Consumer Services
Telecom

Insurance

Ulilities

Banks
Food&Bev&Tobacco
Media
Durables&Apparel
Pharmaceuticals
Food&Staple Retl
Commercial Services

0 5 10 15 20 25 30
Percent

[ N scA ) SCA - increasing steps [N SCA - equal steps ] SCA - decreasing steps

Fig. 6.7 Total risk contributions with respect to different SCA methods



6 Risk Measurement with Spectral Capital Allocation 109

RC/Exposure
T T

Sovereign
Diversified Fin
Transportation

Consumer Services
Automobile&Compo
Media

Telecom
Durables&Apparel
Retailing

Banks
Food&Bev&Tobacco
Food&Staple Retl
Capital Goods
Energy

Commercial Services
Hardware&Equipment
Ulililies

Insurance
Pharmaceuticals

TSN TSRS TR S TARNN A TSR TN Y TRCRS TN TN TN TN TN N T TS S |

0 2 4 6 8 10 12 14 16 18 20
Percent

| I scA [ SCA - increasing steps [0 SCA - equal steps [___) SCA - decreasing steps

Fig. 6.8 Total risk contributions with respect to different SCA methods

steps will increase by 2.5%, i.e. by 2.5000 Euro. In that sense it gives the marginal
capital rate in each industry class. Here the sovereign class is the most risky one.
In that portfolio the sovereign exposure was a single transaction with a low rated
country and it is therefore no surprise that “sovereign” performance worst in all risk
measures (Fig. 6.8).

With that information one should now be in the position to judge about the possi-
ble choice of the most sensible spectral risk measure among the four presented. The
measure denoted by SCA based on the weights 0.1, 0.1, 0.1, 0.15, 0.15, 0.4, overem-
phasis tail risk and ignores volatility risk like the 50%-quantile. From the other three
spectral risk measures, also the risk aversion function of the one with increasing
steps, does emphasis too much the higher quantiles. SCA decreasing steps seems
to punished counterparties with a low rating very much, it seems to a large extend
expected loss driven, which can be also seen in the following table on the RAROC-
type Figs. 6.9. On that table “decreasing steps” does not show much dispersion. One
could in summary therefore recommend SCA-equal steps.

For information purpose we have also displayed the Expected Loss/Risk Ratio
for the Expected Shortfall Contribution in Fig. 6.10. Here the dispersion for the ESC
at the 50% quantile is even lower as for the SCA-decreasing steps.
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6.8 Summary

In order to combine different loss levels in one risk measure spectral risk measures
provide a sensible tool. Weighting of the quantiles is usually be done by the risk
aversion function. Starting from an implementation point of view it looks more
convenient to write a spectral risk measure as a convex combination of expected
shortfall measures. However one has to be careful in the effects on the risk aversion
function. All this holds true and become even more important if capital allocation is
considered, which finally serves as a decision tool to differentiate sub-portfolios with
respect to their riskiness. We analyze an example portfolio with respect to the risk
impact of the industries invested in. Our main focus are the different specification of
the spectral risk measure and we argue in favour for the spectral risk measure based
on a risk aversion which has the same magnitude of increase at each considered
quantile, namely the 50, 90, 95, 99, 99.9, and 99.98% quantile. This risk measure
exhibits a proper balance between tail risk and more volatile risk.
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Chapter 7
Market Based Credit Rating and Its

Applications

R.S. Tsay and H. Zhu

Abstract Credit rating plays a critical role in financial risk management. It is like
a name tag of a firm indicating its health condition. Generally, ratings involve a lot
of firm-specific information which is hard to obtain or only available quarterly. In
this chapter, we propose a two-step algorithm involving ARIMA-GARCH modelling
and clustering to obtain a market based credit rating utilizing easily obtained public
information. The algorithm is applied to 3-year CDS spreads of 247 publicly listed
firms. Empirical result of the application and comparisons between the obtained
ratings with the ratings given by agencies show that such a market based credit
rating performs quite well.

7.1 Introduction

Credit rating is a reflection of a firm’s creditworthiness, traditionally provided by
professional rating agencies. It is widely used to measure the credit risk of a com-
pany, i.e. the firm’s ability to meet its debt servicing obligations, and hence plays a
significant role in the financial market. Investors can use credit ratings to aid their
investment decisions, e.g., Erlenmaier (2011), while an issuer may use the rating to
determine the optimal amount of debt outgoing or signal its low investment risk, e.g.,
Nordberg (2010). Some investment funds may restrict investing only on firms whose
credit ratings exceed certain level.

In the past decades, more and more researchers are interested in credit ratings,
especially after the 2008 subprime financial crisis. Some are interested in the effec-
tiveness of agency’s ratings. For example, Kliger and Sarig (2000) showed that the
credit rating can provide better assessment of default risk than publicly-available
information alone. Hull et al. (2004) discussed the relationship between bond yields,
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Credit Default Swap spreads, and credit rating announcements. Others are interested
in proposition or replication of the ratings by the agencies. Altman (1968) used five
financial ratios to predict bankruptcy, and many researchers employed the same fi-
nancial variables based method to quantify credit risk, such as Kaplan and Urwitz
(1979), Ederington (1985) and Kamstra et al. (2001). This approach often involves
substantial firm-specific information which is hard to obtain or only available quar-
terly. Recently, Creal et al. (2014) proposed a market-based credit rating which makes
direct use of the prices of traded assets. The basic idea of market-based credit rating
is that asset prices of traded firms should reflects timely the publicly-available firm-
specific information. Following the same idea, we propose a market-based credit rat-
ing method using CDS spreads and/or their robustified values. The proposed method
is easy to understand and use. As a matter of fact, the ratings are easily reproducible.

Credit Default Swap (CDS) is a financial agreement between a buyer and a seller
in which the buyer makes periodic payments to the seller and receives a payoff from
the seller in exchange if the reference entity defaults before the CDS contract expires.
CDS is widely used with other financial derivatives to hedge the risk or to speculate
on price movements. The periodic payment the buyer makes, which is also known
as the price of CDS, is quoted in spread. Higher spread means the referred entity
has a higher possibility to default from market’s perspective, indicating its lower
creditworthiness. Ericsson et al. (2009) shows that firm leverage, which is closely
related to default risk, plays a significant role in determining its CDS spread. Micu
et al. (2004) also find that rating changes can cause dynamic shifts on CDS markets.
Therefore, there should be a close relation between credit rating and CDS spread. In
this chapter, we leverage this close relationship and show that the proposed credit
rating based on CDS spreads works well in comparison with the results provided by
rating agencies.

The rest of the chapter proceeds as follows. In the next section, we introduce the
methodology used. In Sect.7.3, we consider empirical analysis and provide some
discussions. The concluding remarks are presented in Sect.7.4.

7.2 Methodology

Different from the method of Creal et al. (2014), the proposed method uses a two-
stage procedure: forecasting and clustering. Our goal is to make the market-based
credit rating easy to follow and use. In particular, no special program is needed. The
proposed method can be easily reproduced. On the other hand, unlike Creal et al.
(2014), we do not consider ratings of firms that have no CDS data.
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7.2.1 Modeling and Forecasting

Assume that we have time series of daily CDS spreads of N firms. Denote the data
by {yizli=1,...,N;t=1,...,T}. These series have the same maturity. In our
empirical analysis, we use 3-year CDS spreads.

Instead of using y;,; directly, we use predictions in the proposed credit rating
method. Rating is necessarily concerning future performance of a firm. Thus, it makes
sense to use predictions. In our empirical analysis, we use 1-step ahead predictions.
If preferred, multi-step predictions can be used. Another reason for using predictions
is to mitigate the impact of outliers. Since firm’s creditworthiness typically does not
change overnight, an abrupt change in CDS spread might be caused by reasons not
related to the fundamentals of a firm. Using predictions can mitigate the impacts of
such isolated outlying observations.

The proposed rating method uses predictions of the level and volatility of a CDS
time series. To obtain the predictions, we apply ARIMA-GARCH models to each
CDS time series. The model entertained can be written as

zir = (1= B)" yi, (7.1)
Pi qi
Zip = Z(ﬁjZi,tﬁ‘ +ai; + Zejai,tfj» (7.2)
j=1 j=1
aj; = Oj1€it, (7.3)
oR =g+ D aial, i+ > Biiot ;. (7.4)
j=1 j=1

where d; is a nonnegative integer denoting the order of differencing, p; and ¢; are
nonnegative integers representing the autoregressive (AR) and moving-average (MA)
order of the differenced series z;;, respectively, {¢, } is a sequence of independently and
identically distributed random variates with mean zero and variance 1, r; and s; are
also nonnegative integers indicating the autoregressive conditional heteroscedastic
(ARCH) order and the generalized ARCH order, respectively. The distribution of ¢,
can be Gaussian or standardized Student-r or some skewed distributions with heavy
tails. Equations (7.1) and (7.2) are referred to as the mean equations for y;, whereas
Eqgs.(7.3) and (7.4) are the volatility equation. This class of model is general and
applicable to the CDS time series. The parameters of the model in Eqs.(7.2) and
(7.4) are estimated by the maximum likelihood method.

There are several R packages available for building an ARIMA(p, d, q)-
GARCH(r, s) model for a given financial time series. See, for instance, the fGarch
and rugarch packages. The latter package allows for fractional differencing, i.e.,
d; of Eq.(7.1) may assume nonnegative real values.

The modeling steps used in this chapter are as follows:

1. Mean equation: For given maximum values of p, d and g, we use the Akaike
information criterion (AIC) to select the order (p;, d;, g;) for the time series y;,.
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As a matter of fact, one can even apply the automatic model selection procedure
auto.arima of the R package forecast to select ARIMA model.

2. ARCH test: Let a;, be the residual series of the mean equation. We apply Ljung-
Box Q(m) statistics to the squared series aizt to detect the existence of conditional
heteroscedasticity, also known as the ARCH effect. Under the null hypothesis of
no conditional heteroscedasticity, the test statistic is distributed asymptotically as
X

3. Volatility equation: If the ARCH effect is statistically significant, we entertain
ARIMA(p;, d;, q;)-GARCH(r;, s;) models with given maximum values r and s
for the GARCH model. Again, AIC is used to select the GARCH order and the
distribution of ¢;,. If the ARIMA order can be reduced as a result of the joint
estimation, we further simplify the mean equation. Again, the modification is
carried out using the AIC.

Our choice of AIC is for simplicity. Other information criteria can be used if needed.

Once an ARIMA-GARCH model is built for the CDS time series y;;, we use
the model to obtain predictions of y;; and its volatility. The forecast origin is the
sample size T. Denote the h-step ahead forecasts of mean and volatility of y;, at
the forecast origin T by x; (h) = (;.7(h), 6; 7 (h)) . Let X}, denote the collection of
h-step ahead forecasts of mean and volatility at the forecast origin T for all time
series. Specifically, the i-row of X, consists of x; (/). We use X, in the proposed
credit rating method.

7.2.2 Clustering

Clustering analysis has a long history in the statistical literature. Many methods
are available, including agglomerative hierarchical methods, K-means, tree-based
methods, and supporting vector machine. In this chapter, we use mainly the K-
means for its wide applicability and nonparametric nature. We also apply a tree-based
method in our discussion.

Consider the predictions in X, which contains the mean and volatility of CDS
spreads. Intuitively, a high-quality company would have low values in mean and
volatility, and higher values in either mean or volatility are indicative of higher default
risk. For ease in notation, we shall omit the subscript 4 and denote the predictions
as X with ith row being x;.

Assume that there are k categories in the rating system. The K-means method
uses some measurement of similarity between companies. In this chapter, we use the
Euclidean distance to measure similarity. The basic idea of the K-means method is
that the distances between members of a cluster should be as small as possible, but
the total distance between the clusters is large. Let $ = {S;|i = 1, ..., k} denote the
k clusters, and m; be the mean vector of members in cluster S;. The K-means method
can be described as



7 Market Based Credit Rating and Its Applications 117

k
: 2
argmin > > [lx —m;|*.

i=1 xeS5;

A company is assigned to one and only one cluster. There are various algorithms
available to achieve K-means clustering. We describe briefly an algorithm below.
Randomly select k points from X and assign them to form k clusters. Since each
cluster has a single element, we denote the initial mean vector of the clusters as
mﬁo), S m,(co). The algorithm then proceeds with the following three steps.

1. Assignment Step: All points x; in X are assigned to S; € S via
Jj = argmind (x;, m,ﬁo))

where d denotes the Euclidean distance. If there are several j satisfying the
condition, one randomly assigns the point to one of those §;.
2. Updating Step: when all points in X are assigned, update the mean vector of each

cluster, namely
(1)
X 9
“F 5

x;€S;

where |§;| denotes the number of points in ;.

2)

3. Repeat the Assignment and Updating Steps to obtain m ;" and check the condition

dm? . my =0, j=1,... k

If the condition fails, repeat Step 3 until it is satisfied.

It is easy to see that the algorithm aims at achieving the stability of the mean vectors.
With the stable mean vectors, the clustering is stable too. In theory, the prior algo-
rithm achieves local convergence as the result may depend on the initial assignment.
However, one can use different initial assignments to ensure global convergence. In
application, some time series may contain outliers that can weaken the accuracy in
prediction, leading to inferior clustering analysis. In this case, some data processing
might be helpful. For instance, one can apply wavelet smoothing to the observed time
series before the modeling. See Nason (2008) for applications of wavelet methods
in statistics.

7.3 Empirical Analysis

In this section, we apply the proposed method to a collection of 294 CDS series with
3-year maturity from Markit. The data are from January 2004 to September 2014.
A few time series did not start in January 2004. In this case, a shorter time span is
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Table 7.1 ARIMA+GARCH Order Combinations
ARIMA order GARCH order
0,0) (1,1) (2,1 2,2)

(0,1,0) 0 0 1 9
(0,1,1) 0 0 1 16
(0,1,2) 1 0 0 9
(1,1,1) 4 0 1 21
(1,1,2) 1 0 0 21
2,1,2) 2 0 0 26
(3,1,2) 0 0 1 10
3,1,3) 1 0 0 9
(4,1,4) 0 0 3 9
4,1,5) 0 12 2 5
(5.1,5) 1 18 1 10

used. Since the observed spreads are small, we analyze y, = log(10000s,), where s,
is the observed spreads.

7.3.1 Modeling and Forecasting

Following the proposed method, we start the analysis with ARIMA-GARCH model-
ing. Table 7.1 summarizes the main results of ARIMA-GARCH order selection. The
ARIMA orders are shown in row whereas GARCH orders in column. These results
are selected by AIC with maximum value 5 for both p and g.

From Table 7.1, a majority of the firms assume the GARCH(2,2) structure. On
the other hand, the ARMA orders vary markedly. The need for the first difference in
the CDS spreads is not surprising as it is in agreement with most time series of asset
prices.

To demonstrate, Fig. 7.1 shows the time plots of observed data, fitted values and
1-step ahead prediction for the 3-year CDS spreads of BestBuy and IBM. The black
line, green line, and red point are the observed data, fitted values, and prediction,
respectively. From the plots, the fitted models appear to provide good fits.

The plots in Fig.7.1 also show marked market impacts and difference between
companies. Both BestBuy and IBM spreads exhibit substantial increases in default
risk during the 2008 financial crisis. On the other hand, the BestBuy spreads show
that the company did not do well in 2013. For the IBM series, there was no clear
increase in default risk after 2011.

Figure 7.2 shows the time plots of log returns of IBM CDS spreads after wavelet
transformation and the associated fitted values. As expected, the model selected by
AIC fits the wavelet transformed data well. The main discrepancies between the data
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Fig.7.1 Observed data, fitted values, and a prediction of 3-year CDS spreads of Best Buy and IBM
from January 2004 to September 2014. The data are log(10000s;) for the observed spread s;
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Fig. 7.2 The log return of IBM 3-year CDS spreads after wavelet transformation (in black) and
the fitted values (in green)

and the fitted value occur during the 2008 financial crisis. The model fits the data
well, especially after 2011. This plot indicates that the rating results of the proposed
method should be robust to the 2008 financial crisis, because we use 1-step ahead
predictions with forecast origin at the end of 2014.

7.3.2  Cluster Analysis

Using 1-step ahead predictions of CDS spreads and their volatilities, we apply the
K-means method of classification. Figure 7.3 plots the total within cluster sum of
squares versus the number of clusters k. The upper figure shows the results for k
from 2 to 10 whereas the lower panel provides a zoom-in view. From the plots, the
number of clusters k should be around 6 or 7.

Since there is a bankrupted firm (RadioShack) in the data, we choose the number
of clusters to be 8. This would allow Radioshack to form its own cluster. With
k = 8, Table 7.2 summarizes the results of K-means clustering method. To ensure
convergence of the K-means method, the results shown are based on 10,000 initial
random starts.

From Table 7.2, most of the firms in our data are clustered into Cluster 1, which
has lower values in mean and volatility. Thus, as expected, most firms have low
default risk. Assuming that the loss recovery rate is 40 %, the expected implied
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Fig. 7.3 Total within cluster sum of squares (against the number of clusters)

probability of default (IPD) of the best group is 22021524 » 3 5 100% = 1.27%,
which appears to be reasonable. This is understandable because the U.S. economy
has largely recovered from the 2008 financial crisis. The default risk of a good
company should be low. The outlying firm belongs to the worst cluster with spread
being ten or hundred times larger than that of other clusters. Such high spread leads
to IPD about 100%, confirming that the firm (RadioShack) is indeed bankrupted.
Other firms showing relatively high CDS spreads include Toy“R”US (1630bps) and
SHC-Acceptance (1715bps). These firms have been known to be in financial stress
in recent years, and they are clustered into the categories 5th to 8th. Note that the
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Table 7.2 Results of K-mean clustering method, where © and o denote the mean spread and
volatility of each cluster

Cluster % o Size
1 25.45244 0.8541984 196
2 81.26927 2.8876315 51
3 142.66127 5.5291877 32
4 256.70490 28.0481097 5
5 412.27850 7.8975128 5
6 841.41321 102.7335156 2
7 1622.83575 41.0780870 2
8 13910.92850 147.6544963 1

Table 7.3 S&P rating versus the proposed market-based credit rating

S&P Rating Market-Based Rating Rank

1 2 3 4 5
AA+ 1 0 0 0 0
AA 1 0 0 0 0
AA- 5 0 0 0 0
A+ 4 0 0 0 0
A 20 0 0 0 0
A- 19 1 0 1 1
BBB+ 23 2 1 0 0
BBB 27 4 1 0 0
BBB- 10 6 0 0 0
BB+ 2 7 2 0 0
BB 1 2 4 1 0
B+ 0 1 0 0 0
B 0 1 2 1 1
B- 0 0 1 0 0
CCC+ 0 0 0 0 1

estimated IPD and the distribution of firms across clusters match well with the rating
results by ICAP (2013) although they used a different data set.

We also compare results of the proposed rating method with the well-known S&P
creditratings. With a limited subsample of 154 firms whose S&P ratings are gathered,
results of the proposed clustering method are directional in line with the S&P ratings.
See Table7.3.

Each cell in Table7.3 shows the number of firms with S&P rating in row and
the clustering result in column. Although the proposed method does not differentiate
much between good firms, which might be due to the small number of firms available
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for the comparison, it is reassuring to see that firms with high ratings by the proposed
market-based credit rating procedure also have high S&P ratings.

Finally, Fig. 7.4 shows the time plots of median spreads and volatilities for each
cluster obtained by the proposed market-based credit rating method. From the plots,
the differences between clusters are clearly seen, indicating that the proposed rating
method is capable of ranking firms based on their CDS spreads. For instance, Clusters
1 and 2 have lower spreads and volatilities. The defaulted firm had increasing spreads
and volatilities over the data span.

7.3.3 Discussion

Some discussions of the proposed market-based credit rating method are in order.
First, as demonstrated by a small subsample, the proposed rating method can produce
ratings that are directional in line with those of the S&P rating. This is encouraging as
the proposed method only uses the CDS spreads. Indeed, the results show that there
exists a close relationship between CDS spreads and the S&P ratings. To demonstrate,
we apply a tree-based classification procedure to the S&P rating using the one-step
ahead predictions of CDS spreads, indicators of the industrial sectors, and log returns
of the spreads as explanatory variables. In other words, we used the subsample of 154
firms mentioned in previous section to build a classification tree with CDS spreads
and some additional variables. In a classification tree, branches are determined by
relevant explanatory variables with more important variables appearing first and more
often.

For detailed explanation of tree procedures and pruned tree classification, see
James et al. (2013). The resulting tree is shown in Fig.7.5a. The first few branches
of the tree are obtained by either the spread or the standard error of the spreads.
The industrial sector only appears in the high-level branches. In the plot, we use
alphabets to represent sectors so that the tree is easier to read. Part (b) of Fig.7.5
shows a pruned tree which provides a clear relationship between the CDS spreads
and the S&P ratings. Consequently, CDS spreads are indeed informative about credit
risk of a firm.

Second, there are ways to improve the proposed model-based credit rating. For
example, a potential weakness of using CDS spreads alone to perform credit rating
is that the method might overlook the variations between industrial sectors. Sim-
ilar to stock returns, the level and volatility of CDS spreads might depend on the
industrial sectors. For instance, healthcare companies tend to have lower volatility
as their demands are more robust to the U.S. business cycles. Table 7.4 provides the
median end-of-year spreads from 2011 to 2013 and the 1-step ahead predictions of
10 industrial sectors to which the 294 time series belong.

From Table 7.4, we see that sectors whose demands are relatively inelastic like
healthcare or industrial sectors have lower spreads all year round while the high-
elastic demand sectors, including financial and consumer goods, have higher spreads.
This is easy to understand because people will lower consumption or investment
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Table 7.4 Median end-of-year CDS spreads from 2011 to 2014 for different industrial sectors

Sector 2011 2012 2013 2014
Basic material 101.32170 66.50631 50.92944 38.05819
Consumer goods 107.78704 68.26233 44.79193 39.74378
Consumer services 109.7089 95.46819 52.94550 39.21939
Energy 70.60976 46.93080 35.96803 33.08610
Financials 164.23591 68.44491 41.62527 32.40109
Healthcare 54.72795 37.95143 21.49869 19.71443
Industrials 64.43414 36.37636 23.81710 23.83260
Technology 103.52434 110.35931 54.64625 41.88988
Telecommunications 42.88189 42.26581 35.86557 37.04494
services

Utilities 106.76204 59.46691 34.12895 25.43286

during recession, but will not stop using daily tools or visiting doctors. With the
difference between sectors, it seems sector may affect credit rating. However, data
from more firms and more sectors are needed to better study the role played by
sectors.

Another interesting issue is that volatilities of CDS spreads may vary from sector
to sector. Sectors with higher volatilities may be more likely to have lower rating.
Since sample variances are sensitive to outliers, we apply wavelet transform to the
log returns of CDS spreads. Figure 7.6 shows the scatter plot of sample means and
standard deviations of the smoothed log returns for various sectors. The plot confirms
that some sectors indeed have higher volatility. Thus, industrial sectors could be used
to enhance credit rating. This issue deserves a careful investigation.

7.4 Concluding Remarks

Similar to stock and future prices, CDS spreads reflect the expectation of market
participants on credit risk of a firm. Thus, CDS spreads are informative for credit
rating. In this chapter, we proposed a market-based credit rating method based on
ARIMA-GARCH modeling and prediction of CDS spreads. The proposed method
is simple and widely applicable. Limited empirical analysis showed that ratings
obtained by the proposed method perform reasonably well. However, further study
is needed to improve the results of the proposed rating method. For example, the issue
mentioned in the comparison of the proposed method with S&P rating in Sect.7.3.2
may be solved using additional information. In particular, information concerning
industrial sectors, macro-economic factors, and firm size could be helpful.

In the literature, Feng et al. (2008) and Amato and Furfine (2004) argue that there
is some effect of business cycle on credit ratings. It’s true that macroeconomic factors
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may affect systematic risk which in turn affect credit ratings. Yet business cycle is
still not fully understood or not widely accepted, see Summers (1998). One of such
examples is the famous equity premium puzzle in the standard RBC model. Finally,
Blume et al. (1998) and Bhojraj and Sengupta (2003) both mention the relationship
between credit rating and firm size; thus firm size may be useful in improving credit
rating. Intuitively, large firm is less likely to default, or even too big to fail. The issue
of firm size also deserves a careful study.
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Chapter 8
Using Public Information to Predict
Corporate Default Risk

C.N. Peng and J.L. Lin

Abstract Corporate defaults are often affected by many factors that are roughly
divided into the two types: internal factors and external factors. Internal factors
can be measured precisely with firm-specific financial statistics while external fac-
tors contain qualitative data, like related news. There are large amount of timely
information from news which affects the default probability of corporates. Efficient
extraction information contained in the news is the main focus of this study and we
propose to use empirical Bayes and Bayesian Networks to achieve this goal. First,
we retrieve both macroeconomic and firm-specific news published by major news-
papers in Taiwan. Then, word segmentation is applied, keywords are extracted and
then the news variables are computed. Instead of adding the news variables to the
logistic regression model, we convert them into prior distribution for the parameters
in the corporate default model. Finally, we compute the posterior distribution of the
model parameters to predict the corporate default. The estimation is performed using
the integrated nested Laplace approximations which, to our belief, is better than the
traditional Markov Chain Monte Carlo for our model. Empirical analysis using Tai-
wanese data finds that news has a significant impact on the corporate default rate
prediction. Adding the news variable does improve the forecast precision and prove
its usefulness.
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8.1 Introduction

Due to the rapid development of internet, we can get instant global economic news
on all the financial media around the clock. There are basically two kinds of news
based on its frequency and involved entity. One is regularly published government
economic data and forecast, and the other is occasional occurrence of corporate
litigation, financial earning information, personnel changes or industry dynamics.
News such as Taiwan HTC’s infringement cases sued by the US Apple, US Apple’s
announcement of its unexpected decrease of sales, or the talk of Morris Chang,
TSMC'’s chairman, will have direct or indirect impacts on business, industry and
the overall economic environment. Extracting and interpreting these financial news
to forecast corporate default rates have been an important issue. However, since
news is mostly qualitative, and is often released irregularly, it is difficult to quantify
such information as variables to be included in the econometric models. In practice,
credit rating agencies such as S and P and Moody’s and other credit rating agencies
have taken into account non-quantitative factors to adjust their credit rating results
obtained from the statistical models.

Financial information can also be classified as qualitative and quantitative types.
News about European debt crisis is qualitative data while credit rating or economic
growth rate is quantitative data. Both types of data have significant impacts on corpo-
rate earnings and should be included in the corporate default prediction models. For
the quantitative data, one can directly feed them into statistical models for empirical
analysis. As for extracting information from qualitative data, it would be much more
convenient to perform the task using the Bayesian models, which combine prior dis-
tribution and likelihood function into posterior distribution. Qualitative information
is for prior distribution as data is for the likelihood function. In other words, tex-
tual news can be coerced into priori distribution. Yet, there is still one obstacle for
this implementation. In traditional Bayesian models, priori distribution is formulated
for the model parameters in likelihood functions or in regression models. While we
could easily make a statistical inference from the news about its impact on default
rate, its implication for models parameters is unclear. For example, the Euro debt
crisis will not only increase the potential default probability of the bank, but also
slowdown economic growth. Such information is difficult to be converted into priori
distribution of model parameters. Therefore, the main purpose of this paper is to
quantify financial news and embed it in a Bayesian framework to forecast corporate
default rates. The computation and simulation are performed using the Integrated
Nested Laplace Approximations (INLA) which is believed to be more efficient than
the popular Markov Chain Monte Carlo (MCMC) for our model. It is worth men-
tioning that our model could be further developed as a real-time and dynamic default
prediction model that is very useful for credit risk management.
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8.2 Literature Review

Credit rating reflects the soundness of the enterprise and related literatures are volu-
minous. We shall first examine the influences of credit rating by some major credit
rating agencies, followed by evaluating these credit ratings. Then, we discuss papers
on modeling corporate default probability and introduce information theory and its
application. Finally, we review models containing quantitative and qualitative vari-
ables.

Brooksaff et al. (2004) used the Standard & Poor and Fitch’s credit ratings to
assess their impacts on the global stock market. The empirical analysis confirmed
significant effects, especially when the credit rating are downward graded. Yet, it is
not the case for newly developing countries. Ferreira and Gama (2007) also found
a spillover effect on the stock markets of other countries when a country’s rating
is downward graded. Kim and Wu (2008) discover some impacts on credit markets
when credit rating agencies release long and short term ratings. Orth (2013) applied
Bayesian simulation approach to adjust the rating of sovereign debt securities and
corporate debt securities. There exist under-estimation of risk for Standard & Poor’s
creditrating, especially when the rating is downward graded. Literatures on modeling
corporate default probability are voluminous and can be roughly divided into two
categories: structural model and reduced-form model. Merton’s model as in Black and
Scholes (1973) and Merton (1974) is the representative structural model. Creditrating
agency, Moody, further revised it as Merton-KMV model. In this model, when the
market value of a corporate’s assets is lower than its liabilities, the company will soon
reach default. It uses European option pricing to calculate the default probability. This
model has been called firm-value based model. Vasicek (1977) and Shimko (1993)
use stochastic interest rates to evaluate the Bond prices. Longstaff and Schwartz
(1995) and Hui et al. (2003) relax part of the assumptions and modify Merton model.
However, in addition to the internal factors from within the corporate, there are
many external factors that could cause corporate default. The changing external
environment has gradually made structural model less popular. Reduced-form model,
also known as intensity model, mainly explores the linkage among corporate default
and the explanatory variables. It was first proposed by Jarrow and Turnbull (1995) and
a great deal of related models were developed, including multiple regression analysis
(West 1970), multivariate discriminant analysis and Z-score model (Altman 1968),
logistic model (Ohlson 1980), Probit model (Zmijewski 1984), order probability
model (Gentry et al. 1985; Blume et al. 1998; Guttler and Wahrenburg 2007), fixed
proportional hazards model (Cox 1972; Lane et al. 1986; Bharath and Shumway
2008), discrete-time hazard model (Shumway 2001; Chava and Jarrow 2004), credit
rating transition matrix (Lando and Skodeberg 2002) and dynamic default intensity
model (Duffie et al. 2007). It is worth noting that (Duffie et al. 2007) and its extended
models belong to the application of survival models, which use macroeconomic,
industry, firm-specific and other variables to estimate the default intensity.

Information arrives in many forms but all affect the corporates performance. While
information about corporate earnings and other general information are released on
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quarterly or monthly based, the daily stock market is often strongly influenced by
the news of the day so that the daily close price reflect daily market information
rather than corporate real operating conditions. Brown et al. (1988), Braun et al.
(1995), Pandher and Currie (2013), Coval and Shumway (2001) and others interpret
this phenomenon from different angles. Tetlock (2007) studied medias (Wall Street
Journal) impact on investors and found significant impacts of negative news on
stock trading volume. Tetlock et al. (2008) show that negative wording will affect
corporate revenue and can be used as an important predictor for the stock returns and
the corporate revenue. Antweiler and Frank (2004) studied the impact of the web
news on stock market. Yet, it is rather difficult to evaluate the composite impacts
of news from different sources as their basic characteristics might be different from
each other in a fundamental way.

For Bayesian credit risk literature, Czado (1994) derived Bayesian inference
of binary regression models with parametric link; Gossl (2005), and McNeil and
Wendin (2007) used Bayesian inference method to revise portfolio credit risk cal-
culation; Kiefer (2008, 2009, 2010), Jacobs and Kiefer (2010, 2011), Gossl (2005)
and McNeil and Wendin (2007) included outside experts opinions via Bayesian
framework to compute the posterior density of underlying parameters in credit risk
models. Orth (2013) studied the evaluation of sovereign and corporate credit risk, and
calculated credit rating transition matrix. Lock and Gelman (2010) transforms the
poll results into a priori distribution and then combine it with the general regression
model to predict the US presidential election results. Ben-Gal (2007) and Fernandez
and Salmeron (2008) show that Bayesian network model could be represented by
directed acyclic graph, which describes the relationship between two or more nodes,
and the node strength was expressed by probability. Yet, this approach requires clear
definitions of all nodes with real data that limited its applicability. Among few related
researches, Alexander (2000) used Bayesian belief networks (BBNs) to design work
insurance policy. Pourret et al. (2008a), mentioned that Denmark’s largest financial
services company (Nykredit) applied BBNs to predict the default probability of large
corporates. It is worth noting that Bayesian network model is mainly applied in com-
putational biology and bioinformatics gene regulatory networks, gene expression
analysis, document classification, information retrieval, decision support systems
and so on.

Furthermore, both Back et al. (2001) and Kloptchenko et al. (2004) combined
firm-specific variables with news processed using text mining methods to evaluate
the impact of the news on the corporation. However, this approach is limited to
specific event and is difficult to generalize to general cases. Only few studies combine
quantitative and qualitative data into a single model to predict corporate default rates
and Lu et al. (2012) is one exception. He retrieved keywords from news, classified
these keywords into crisis and non-crisis categories, use chi-square test to screen
proper keywords and then assign weights to construct Intensity of Default-Corpus
(ITDC) which latter is fed into a logistic regression model for corporate default
probability prediction. The empirical results showed that the closer to the crisis point
the better estimation of default probability.
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8.3 Econometric Models

We shall discuss our econometric models in two parts. The conventional corporate
default model is first introduced and then the news variables are added.

8.3.1 Logistic Models for Default Rate

Among existing models, we select Shumway (2001)’s model as our base model
because it is a dynamic discrete-time hazard model. Let T denote the time of default
and the firm starts at = 1. Then, the survival probability at At, is

p(tlx) =pt et t + AT > t,x]) (8.1)
1

T 1+ e t—0:X 8.2)

The multi-period logistic model for empirical analysis. Equation(8.2) now
becomes

A(t)x) = In(p(tlx)) = 019(t) + 6,X (8.3)

where ¢g(¢) = In(¢) is a function of ¢, 0, 6, are estimated parameters, and x could
be firm-specific earnings or macroeconomic variables. By plugging-in estimated
parameters into the model, we get the strength of default, the higher the value the
higher the default probability. Note that model defined in (8.3) will be reduced to
standard logistic model if the term g(¢)(= In(t)) is removed.

8.3.2 Default Models Including News Information

In Bayesian models, past data can be used to specify priori distribution (Robbins
(1985), Brandel (2004)). Assume that p(x|6) is the likelihood function of x, and 6 is
the unknown parameter of interest. Let g(f|n) be the prior distribution of 6, where n
is called hyper-parameters vector. Brandel (2004) applied Bayes theory and obtained
posterior distribution as

p(0lx, ) = pGl0)g@lm _ p&l0)g(@ln)
’ m(x|n) [ p(x0)g(BIn)d6

where m(x|n) = f p(x]6)g(0]n)d0 is the marginal distribution of x. Then the expec-
tation of posterior density is
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[ 0p(x10)g(01nm)do

O = 6)g(Bm)ad

(8.4)

In (8.4), the estimation result will be affected by the hyper-parameters vector, 7).
Estimation is straightforward if 7 is known but 7 is usually unknown in practice. In
turn, Marginal Maximum Likelihood Estimation (MMLE) can be applied and the
resulting marginal distribution m(x|n) of x is then used to estimate 7. This process
is called empirical Bayes method.

Obviously, for default probability model, the dependent variable is O (event does
not occur) or 1 (event occurs), the estimated default probability is within (0,1] and
the explanatory variables are macroeconomic or firm-specific financial variables.
This explains why Kleinman (1973) Wilhelmsen et al. (2009), Kiefer (2009, 2010),
and Jacobs and Kiefer (2010, 2011) all choose Beta-Binomial model. Assume that
variable Y;, represents the default status of i-th corporate at time 7. ¥;; = 1 when it
defaults or Y;; = 0 when it does not default. Y;; has Bernoulli(7;) distribution, where
m; is default probability of corporate i. Assume the default status of corporate i is
independent over time. Let X; be the default status up to time n;, we have the following
formula

X = Z Yy ~ B(n;, m;)

where X; has binomial distribution and variable X; will vary with ;. The maximum
likelihood function of corporate i with default probability at time n; is

pXi = xi|m) = Climy (1 — )™~

Through dynamic default probability model, we can solve for m;. Assume 7; has
Beta(r, s) distribution and is re-parameterized as Beta,.,(u, M) where

=T M=ry+s
h= v

Put (8.5) into Beta(u, M), the joint probability density function is

— — F(M) Mp—1 _ M(—p)—1
=m0 = rompraaa—m ™ T

Thus the marginal probability function is

(M) T +MwT(n —x +M(1 — p))

X =2l M) = R G T = ) T E M)
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Finally, the posterior distribution is Beta(rgg, sgg) where
YEB =X +Mp, Spp=n—x+ M1 — p)

In the estimation process, the relationship of hyper-parameters requires simulation
estimation. While there exist a great of simulation estimation methods, Markov Chain
Monte Carlo (MCMC) or EM-algorithm are commonly used. This paper adopts
more efficient Integrated Nested Laplace Approximations (INLA). Wilhelmsen et al.
(2009) compared the difference between MCMC and INLA, and found that the
efficiency and accuracy of INLA are better than that of MCMC. See Rue et al.
(2009) for details.

8.3.3 Bayesian Network Model

Ben-Gal (2007) pointed out that the main structure of Bayesian network model is
non-circulate probability graphical model where there exist sequential causal rela-
tionships among various events. In this paper, we shall estimate A(¢|x) in the discrete-
time hazard model. As it is affected not only by firm-specific variables at time ¢, but
also by the news information at time ¢ — 1. Hence, we specify the default probability
function as

filXi1),i=1,2,....n

where X; ;_; is the news information factor at time ¢+ — 1. News information will be
retrieved, quantified and its probability distribution will be simulated. Finally, using
Bayesian network method, we can get revised default probability as

f(YnXi,tfl), i=1,2,..,n
From above, assume there are two news X; and X, then
F, Xy, Xo) = fF(Y1X1, Xo)f (Xl X1)f (X1)

where f(Y|X], X») is the default probability from the corporate default model, and
f(X>2|X1) is mutual impact between news events. This, in principle, can be used to
estimate the impact of sequent news events on default probability but it is difficult
to implement in practice. Thus, we follow Fernandez and Salmeron (2008) and Rij-
men (2008) and apply regression analysis. Since Bayesian network is non-circulate
directed, each news event can be treated as an explanatory variable, and the depen-
dent variable is the corporate default variable. Under multiple news events, we need
to consider whether they are related with each other. Its mathematical formula is

fYIX)=aX +¢
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were Y represent default of the corporate, X is news event and € is random error.
Obviously, we have

SO0 o O

YIX) =
o JX) JX)

and

JXIY) o f(N)F(X]Y)

It is called Naive Bayes (NB) when each news event is independent and Tree Aug-
mented Naive Bayes (TAN) when news are dependent. Rijmen (2008) adopts logistic
regression in Bayesian Network model where the weight of each segmented word is
estimated with the logistic regression model. Wilhelmsen et al. (2009) assumed the
prior distribution of logistic regression coefficients is

B ~m(Bilé), j=0,1,...M

where 7(-|0) denotes all possible distributional function, and ¢ is a scalar or vector
parameter. In this paper, 6; is assumed as a scalar from news information, we obtain
posterior distribution as

(8, 0ly) = = (y)’y) o« 7(y|B. O)m (B|0)7(6) 8.5)

= [[=0u18, )= (BT (6) (8.6)

Solved by INLA, we obtain 7 (3, 8]y) where news information is included.

Rue et al. (2009) derive the test for parameters. Let y = (y1, y2, - - - , y») be the
observed variable, its probability function be 7(3|¢), and the model for unknown
parameter (3 be w((3|6), and 6 is hyper-parameter. () is distribution function of
hyper-parameter, and through Bayesian theory we get marginal posterior distribution
as

() = /9 (3,10, ) (O1y)dO (8.7)
TGly) = / TOly)do-; 8.8)

Through INLA, we get the approximation of marginal posterior distribution as

#(Bly) = /9 (3,10, )7 (O1y)dO (8.9)
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#6)y) = / #(Oly)do.; (8.10)

where [ 7(6|y)df_; represents integration over all but the j-th parameter. In other
words, to obtain the estimated value of the parameters, we have to integrate over all
hyper-parameters. As the parameter vector 6 is multi-dimensional, we must use the
Laplace estimate. In order to improve accuracy, latent Gaussian models are applied.
To obtain the estimation of 7((;|y), we need to get an approximation of 7(3;|6, y)
and 7(f]y), which are assumed as Gaussian distribution. We use Kullback-Leibler
Divergence (KLD) test which is defined as below:

Diu(PI|0) = / in P\ p oy
—o  qx)
p(x)

E)P(x)

Di(PlIQ) = D In(

where P, Q are respective two cumulative probability distribution for continuous and
discrete random variables. Let Q be normal distribution, when Dg L(P||Q) ~ 0, P is
also normally distributed.

For model selection, we shall use two methods: in-sample Receiver Operating
Characteristic Curve (ROC) and out-of-sample forecasting error (Lin and Tsay 2007).
Altman and Bland (1994) proposed ROC as a method of diagnostic test, which is
widely used by biometrics. Within a 2 x 2 table, P denotes positive and N negative.

Diag P N Total
Truth

P TPEFEN

N FP TN
Total Nobs

The True Positive(TP) and True Negative (TN) are the cells for the right diagnostics.
Let Nobs denote total number of samples, then accuracy ratio, sensitivity and speci-
ficity are respectively defined as (TP+TN)/Nobs and TP/(TP+FN). ROC is based
upon sensitivity and specificity, and can be used for model comparison.

As for out of sample forecasting error, we can calculate its Root Mean Square of
Error (RMSE)

RMSE, =

To summarize, these news frequencies are used to obtain the prior distribution of the
regression parameters 3 in Shumways model.
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8.4 Extracting News Information

Chinese characters can be divided into three types: classical, vernacular and other
dialects. Their usages and the structures are all different from each other. Vernacular
is currently used, which might vary due to the geographical environment and social
backgrounds, but in general follows certain syntax. Tsay (2008) pointed out that a
sentence is constituted by two basic components, subject and predicate. Subject is
the major part of the sentence, either the perpetrators of the action, or the objects
being interpreted, clarified or depicted. The predicate is the statement to clarify
the subject. In this paper, news from various media also follow a set of rules. For
example, editorial manual of Central News Agency depicts the main structure and
term usage. We further classify economic news in Taiwan into two categories. One
is economic news containing economic data, business cycle indicators, or economic
policy announcement released by the government official or agencies, which does
not make judgment of any corporate. The other one is public talks or comments on
specific corporate. In addition to Taiwan’s local news, foreign financial news also
has a considerable impact. We must distinguish their impacts.

8.4.1 News Keywords

Keyword is set in accordance with the commonly used terms and categorized by
subject, verb and adjective. Six main structures of the subject are set including raw
materials, European debt crisis, people and institutions, economic data release, as
well as business and policy agreements. Within each main structure, at least eight
keywords are selected, which can be different words with same meaning. The pred-
icate is mainly verbs, such as recovery, recess, rise, fall, up, down, strength and the
like. Default keywords defined by Taiwan Economic Journal (TEJ) are also included.
There are 10 categories: bankruptcies, restructuring, bounced checks, bail out, take
over, CPAs doubt on continuous operation, net worth is negative, unlist, tight budget,
negative worth, and shut down. Finally, these keywords are classified as positive,
neutral and negative.

8.4.2 Keyword Conversion

Segmented keywords from all news items (documents) are compiled into the
document-term matrix where columns are news items, and rows are keywords. For
each cell, 0 and 1 indicate if there is such keyword. For each keyword, summing over
all news items during any specific quarter will produce frequency of keywords. This
process is repeated separately for positive and negative keywords and their ratios are
then computed.
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8.5 Empirical Analysis and Results

This paper uses quarterly firm-specific data of all listed companies in Taiwan from
2000t02012. The data is taken from TEJ, excluding incomplete data entries, financial
firms and news media corporations. There are 908 corporates where 805 are still listed
at the end of the sample period and 103 are unlisted. As for news, there are mainly
two sources: newspaper and networks news. Yet, as the latter is only available for
one month after posting, we only use newspapers news. The major four newspapers
in Taiwan are China Times, United Daily News, Free News and Apple Daily. The
data is collected daily from the first quarter of 2008 to the fourth quarter of 2012,
amounting to about 270,000 news items.

8.5.1 Empirical Models

This empirical analysis is illustrated in two parts. First, we follow previous research
in selecting firm-specific quantitative variables under the constraint that the resulting
ROC curve is above 90%. Second, as for news variables, we employ empirical Bayes
and Bayesian networks to convert as quantitative variables and then feed them into
the base default model as is introduced previously. We compare the performance of
the following six models:

1. Model I: Earnings model
This is the conventional default model only based upon firm-specific financial
variables and In(t). Standard logistic regression estimation will suffice.

2. Model II: Earnings-macroeconomic model
In additional to firm-specific financial variables and In(f), macroeconomic vari-
ables are also included in the model for default prediction. Again, the model is
estimated using standard logistic regression.

3. Model III: Bayesian earnings model
Earnings models are formulated under Bayesian framework and is used to predict
corporate defaults. Empirical Bayes is used for model estimation. To be specific,
default variable is first regressed against firm-specific financial variables and
the estimation results are then converted into prior distribution of the associated
parameters using INLA algorithm. Finally, the posterior distribution are derived
with prior and likelihood function.

4. Model IV: Bayesian earnings-macroeconomic model
Both firm-specific financial variables and macroeconomic variables are included
in the model under Bayesian framework. Estimation procedure is the same as
Bayesian earnings model except that macroeconomic variables are added.

5. Model V: Bayesian news-earnings model
News variables are added to the Bayesian earning model via empirical Bayes
method and INLA. To be specific, firm-specific news are classified as good
news, and bad news and their relative frequencies to all news are computed.
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For macroeconomic news, only those containing the five most and least fre-
quent keywords, such as price, monetary policy are counted. These news are
further classified as good news or bad news. Next, regress the firm default vari-
able against /n(¢), firm-specific good news and firm-specific bad news for each
firm. Then, for each ten macroeconomic key variables, regress firm default vari-
able against macroeconomic good news and bad news for each firm. Summing
the predicted probability distribution obtained from five most frequent keywords
and firm-specific regressions give rise to model 5(L). Similarly, summing the
predicted probability distribution obtained from five least frequent keywords and
firm-specific regressions gives rise to model 5(S). It is worth noting that the idea
of Bayesian network model is used in this step. Now, we could combine news
effects with Shumway’s model with firm-specific variable using INLA.
6. Model VI: Bayesian news-earning-macroeconomic model

News variables are added to the Bayesian earnings-macroeconomic model via
empirical Bayes method and INLA. Computation procedure is the same as
Bayesian news-earnings model except for the added macroeconomic variables.

8.5.2 Variable Selection

In the discrete-time hazard model, explanatory variables must be included to predict
corporate default probability. Altman (1968), Ohlson (1980) and Zmijewski (1984)
used three to nine financial ratio variables. Shumway (2001) included two financial
ratios and three market-driven variables. Chava and Jarrow (2004) added industrial
variables to those in Altman (1968) and Zmijewski (1984). Lee and Yeh (2004)
focused on the relationship between corporate governance and financial distress.
Duffie et al. (2007) added macroeconomic variables to the dynamic intensity model.
Campbell et al. (2008) added two firm-specific financial ratios and stock return to the
list of variables compiled by Shumway. Standard & Poor consider eighteen variables
on liquidity, terms of profitability, capital structure, cash flow and ability to repay
interest etc. in corporate’s credit rating.

After taking all these literatures into consideration, we select seven variables:
assets-liabilities ratio, quick ratio, ratio of retained earnings to total assets, earn-
ings per share, operating expense ratio, unemployment rate, and TAIEX (Taiwan
Stock Exchange Capitalization Weighted Stock Index) return. The definitions of the
selected variables are reported in Table 8.1. In additional to the variable definition
and type of variables, their expected sings are also listed. Table 8.2 summarizes basic
statistics of the variables. Except for unemployment rate and the stock market return,
extremely large skewness and kurtosis of firm-specific financial variables indicate
obvious departure from normal distribution assumption. Table 8.3 reports the para-
meter estimates for Model I and II. As can be seen from the table, except for the ratio
of retained earnings to total assets, all variables are significant and their signs are
consistent with prediction from finance theory. The Bayesian estimates for Model I11
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Table 8.1 Variable definitions
Category Name Variable definition Sign
Financial structure | Asset-liability ratio Total asset/total liability Negative
Solvency Quick ratio (Liquid Negative
asset-inventory)/liquid
liability
Profitability Ratio of retained earnings to | Retained earning/total assets | Negative
total assets
Earning per share Earning/number of shares Negative
Operating capacity | Operating expense ratio Operating expense/net Positive
revenue
Macro variables Unemployment rate Positive
Stock market return Negative
Table 8.2 Summary statistics for explanatory variables
Variable Mean | Std Median Skewness | Kurtosis
Assets-liabilities ratio 3.52 5.11 2.61 25.81 1083.35
Quick ratio 1.65 4.08 1.06 26.86 1139.92
Retained earnings to total 0.06 0.66 0.10 —49.58 3273.97
assets ratio
Earnings per share 1.15 3.56 0.66 54.42 5886.05
Operating expense ratio 0.26 6.49 0.10 110.16 14210.83
Unemployment rate 4.48 0.72 4.32 0.19 2.77
Stock market return 3.80 26.47 6.89 0.13 3.22

Table 8.3 Parameter estimates for Model I and II.

<0.05**p<0.1%

Signif. codes: p < 0.001 **¥*; p < 0.01 ***; p

Model I Model 11

Est. t-stat Est. t-stat
Intercept —0.9814 —3.306%*** | —2.8829 —6.067****
Time trend —0.2667 —4.151%%%% | —0.4406 —5.145%%%*
Assets-liabilities ratio —1.0066 —6.734%%*%*% | —1.0574 —6.427#%**
Quick ratio —3.1559 —11.742%%%% | —3.0579 —10.585%***
Retained earnings to total 0.0776 1.495 0.0767 1.470
assets ratio
Earnings per share —0.1998 —9.201%*** | —0.1974 —8.202% k%
Operating expense ratio 0.0085 3.188%** 0.0080 2.457%*
Unemployment rate 0.5361 5.726%%**
Stock market return —0.0041 —1.668*
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Table 8.5 Estimation results of logistic model with news variables Signif. codes: p < 0.001%**%%*;
p < 0.01%**; p < 0.05%*; p < 0.1*

Pooled news Category news

est. t-stat est. t-stat
Intercept 2.19453 0.464 0.8633 0.164
Time trend —2.18977 —1.711 —1.9608 —1.387
Pooled news —0.01627 —1.247
Positive news —1.688 —2.234%*
Negative news 1.6849 2.627%%%*

and IV are summarized in Table 8.4. In additional to mean, standard deviation, 2.50
and 97.5% quantiles, we also compute Kullback-Leibler Divergence (KLD) statistics
which measures divergence from normal distribution. KLD values of all parameters
are very small, indicating little divergence of the posterior distribution from normal
distribution. Furthermore, we also find that except for the ratio of retained earnings
to total assets and TAIEX return, the 95% confidence interval of all parameters do
not include 0.

8.5.3 Adding News Variables

For the purpose of comparison, we perform a logistic regression of corporate default
indicator directly against news variables and put the results in Table 8.5. On the left
panel of the table all news are pooled together while on the right panel positive and
negative news are separated. As is expected, pooled news variable is not significant
while negative news has stronger effect than positive news on corporate default rate
though both estimates are significant. Similar findings were found in Lu et al. (2012).

Now we turn to models V and VI where news variables are added to Shumway’s
model on the Bayesian framework. Empirical results are reported in Table 8.6. A
detailed comparison of estimation results, we make the following observations. First,
estimation results of Shumway model without news variables are similar whether it
is estimated within classical logistic model or empirical Bayesian model. Second,
the results of Model V and VI are similar to those of models III and IV that except for
the ratio of retained earnings to total assets and TAIEX return, the 95% confidence
interval of all parameters do not include 0 and all KLDs are close to 0. Third, adding
news variables to the Bayesian model would change the parameter estimates a great
deal. For example, the impacts on quick ratio double in Models V and VI. Fourth, as
is in Fig. 8.1 where RMSE for out-of-sample forecast over time are graphed, model
IT with macroeconomic variables consistently outperform the base model I with only
firm-specific variable. Fifth, as is shown in Fig. 8.2, ROC curves of all six models
are all above 90%, but the difference is small among models.
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Fig. 8.1 RMSEs for Model I RMSE from 200812 to 201209
and II

—— Model 1
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Figure 8.3 is the time series graph of average corporate default rate where annual
default rates are put in the left panel whereas quarterly default rates are put in the
right panel. The upper panel are based on ratio of number of unlisting stocks to total
stocks while the bottom panel is computed following the definition of default in TEJ.
As is obvious from the figures, the peaks and troughs of default rate defined by TEJ
leads those defined by unlisting.

Figure 8.4 displays the average corporate default intensity of all six models which
is the simple average of each corporate’s default intensity in each model respectively.
Comparing the resulting intensity figures of paired models will highlight their differ-
ences. Models I, IIl and V do not contain macroeconomic variables and are put in left
panel of the figure while Model II, IV and VI include macroeconomic variables and
are put in the right panel. From the figure, we make the following findings. First, the
estimated default intensity of empirical Bayesian model (model III/IV) are smaller
than those from Shumway model (model I/IT). Both estimates differ from each other
by a big margin from 2002 to 2008 when the subprime mortgage crisis broke out.
Yet both estimates converge after 2008 crisis. The patterns are similar for both paired
models with and without macroeconomic variables. Second, as news variables are
collected from Jan 1, 2008 to Dec 31, 2012, comparing estimation results of two sub-
periods with and without news variable would reveal the impacts of new variables.
Considering that each keyword might have different impact on corporates default
probability, we add one more step. We first perform a logistic regression again each
macroeconomic keyword, compute the squared root of residual sum of squares, RSS,
and then sort them in ascending order. Next, we select the keywords with the 5 largest
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Fig. 8.2 ROC curves for all six models
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RSSs (denoted as L-keywords) and keywords with 5 smallest RSSs (denoted as
S-keywords). These L- and S-keywords are then respectively combined with key-
words for each corporate, fed into the Bayesian models and estimated using INLA the
algorithm. The results are put in the middle and bottom panels of Fig. 8.4. From the
figure, we observe that without macroeconomic variables, adding S-keywords pro-
duces a sharp increase of corporate default intensity in early 2008 while the impact
of S-keyword are much smaller. The situation is reversed when macroeconomic vari-
ables are included in the model where L-keywords has a stronger impact on default
intensity than S-keywords. It deserves further investigation to explain this phenom-
enon. Finally, the ROC curves for all six models are reported in Fig. 8.2. They are all
above 90% but adding news variables does not significantly increase the ROC curve.
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Fig. 8.4 Time series plot of default intensity of all six models

8.6 Conclusions

While corporates’ financial reports are released on a quarterly basis, daily economic
or financial news could provide timely and useful information about the corporate
default probability. This paper provides a framework to extract information from
text-based news to improve corporate default prediction. Instead of converting news
as a new variable in a standard logistic regression model, we employ the complicated
INLA method to transform news into prior information of corporate default and then
estimate its impact within a Bayesian model. The conversion is completed using the
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INLA. Empirical analysis confirms usefulness of the proposed method though there
are rooms for improvement. For example, each keyword might have different weight
and the timing of the news within each quarter might be important. These issues
deserve further investigation in the future.
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Chapter 9
Stress Testing in Credit Portfolio Models

M. Kalkbrener and L. Overbeck

Abstract As, in light of the recent financial crises, stress tests have become an
integral part of risk management and banking supervision, the analysis and under-
standing of risk model behaviour under stress has become ever more important. In
this paper, we present a general approach to implementing stress scenarios in a multi-
factor credit portfolio model and analyse asset correlations, default probabilities and
default correlations under stress. We use our results to study the implications for
credit reserves and capital requirements and illustrate the proposed methodology by
stressing a large investment banking portfolio. Although our stress testing approach
is developed in a particular credit portfolio model, the main concept - stressing risk
factors through a truncation of their distributions - is independent of the model spec-
ification and can be applied to other risk types as well.

9.1 Introduction

Stress testing has been adopted as a generic term describing various techniques used
by financial firms to analyze their potential vulnerability to extreme yet plausible
events, see para 718 in Basel Committee on Banking Supervision (2006) for spe-
cific requirements on banks’ stress testing programs. Stress scenarios have long been
used in risk management to supplement risk measures like value-at-risk (VaR) and
economic capital (EC), e.g. Kupiec (1998) and Berkowitz (2000), but stress testing
has gained new prominence in the aftermath of the subprime crisis and the European
sovereign debt crisis. In particular, it has become an integral part of banking super-
vision, which is reflected in regulatory stress testing programs such as the annual
Comprehensive Capital Assessment Review (CCAR) performed by the FED since
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2010 (Board of Governors of the Federal Reserve (2012)) and the EU-Wide Stress
Tests, see European Banking Authority (2011). Principles of sound stress testing
practices have been laid down by the Basel Committee on Banking Supervision
(2009), analysis and surveys of macroeconomic stress testing can be found in Cihdk
(2007), Alfaro and Drehmann (2009), Drehmann (2009), Quagliariello (2009) and
Borio et al. (2012).

An important challenge in designing effective stress tests is the selection of sce-
narios that are both severe and plausible. One approach frequently used by risk
managers is the application of historical scenarios such as the 1987 stock market
crash or the subprime crisis. By their very nature, historical scenarios are plausible
and provide useful information on the sensitivity of a portfolio to specific market
shocks but they restrict attention to prior stress episodes. Hypothetical scenarios, in
contrast, are not constrained to replicate specific past incidents and can therefore
cover a broader spectrum of potential risks. However, depending on the choice of
the hypothetical scenarios, stress test results might misrepresent risks either because
the most dangerous scenarios are not considered or because the selected scenarios
are too implausible. In order to overcome this problem, systematic approaches to
scenario selection have been investigated for more than 15 years, e.g. Studer (1999).
More recent work on that subject includes Breuer et al. (2009), Breuer and Csiszér
(2013), Flood and Korenko (2015) and Glasserman et al. (2015).

In this paper, we present an alternative approach to the specification of stress
scenarios, which has initially been introduced in Bonti et al. (2006) for analyzing
credit concentrations. Duellmann and Erdelmeier (2009) use the same methodology
for stressing credit portfolios of German banks. In this approach, statistical EC or
VaR models serve as quantitative framework for the specification of stress scenarios.
More precisely, stress scenarios are defined through constraints on the risk factors of
the model. These constraints are then used to truncate the distribution of the stressed
risk factors or - in other words - restrict the state space of the model, where each state
represents values of the risk factors. The response of the peripheral (or unstressed) risk
factors is specified by the dependence structure of the model. As an example, consider
an economic downturn in the automotive sector. In a structural credit portfolio model
with industry and country factors this scenario can be implemented by truncating
the systematic risk factor for the automotive industry. The severity of the downturn
scenario is reflected through the truncation threshold, so that alower threshold implies
more severe stress. Since the automotive industry is positively correlated to most
industry and country factors non-automotive exposures are affected as well.

The specification of stress scenarios through constraints on risk factors of VaR or
EC models has a number of advantages:

1. Stress scenarios are implemented in a way that is consistent with the existing
quantitative framework. This implies that the relationships between (unrestricted)
risk factors remain intact and the experience gained in the day-to-day use of the
model can be utilized in the interpretation of stress testing results. It has to be ana-
lyzed, however, whether historical correlation patterns, which are typically used
for calibrating (unstressed) risk capital models, provide an appropriate depen-



9 Stress Testing in Credit Portfolio Models 155

dence structure for stress testing, see Sect. 9.4 for a sensitivity analysis of model
correlations under stress.

2. Inagiven stress scenario, risk factors are not set to deterministic values but remain
stochastic variables, i.e., stressed as well as unstressed factors follow a joint
distribution conditional on the truncation thresholds that define the stress scenario.
This feature distinguishes our approach from standard stress tests, which are
typically based on deterministic stress scenarios. As a consequence, stressed risk
measures, e.g. expected loss, value-at-risk or economic capital, can be calculated
in each stress scenario.

3. The probability of each stress scenario, e.g. the probability that the risk factors
satisfy all the constraints under non-stress conditions, can be easily calculated in
the statistical model. This is a good indicator for the severity of a stress scenario.

Our stress testing methodology is developed in a multi-factor credit portfolio
model. We provide details on the implementation of stress scenarios and discuss
practical issues such as the calculation of truncation thresholds in multi-factor stress
scenarios. Another objective of this paper is to review recent results on stressed asset
correlations, default probabilities and default correlations presented in Kalkbrener
and Packham (2015a) and Packham et al. (2014). In these papers, the analysis is
performed in a factor model that follows a normal variance mixture distribution,
which covers a wide range of light-tailed to heavy-tailed distributions. Aside from
analysing the behaviour under stress for given stress levels or stress probabilities, the
asymptotic behaviour, that is, the behaviour under stress as the stress level becomes
arbitrarily high, is investigated. Contrary to popular belief, it is shown that the impact
of stress on the asymptotic behaviour is greater in light-tailed models than in heavy-
tailed models. More specifically,

e asset correlations under stress are less sensitive for heavy-tailed models than light-
tailed models;

e default correlations under stress converge to O for light-tailed models and to a
number strictly greater than O for heavy-tailed models;

e default probabilities converge to 1 for light-tailed models and to a number strictly
smaller than 1 for heavy-tailed models.

However, the asymptotic behaviour of stresses PDs is not representative for ordinary
stress tests: only for rather extreme stress severities, stressed PD’s become higher in
light-tailed than in heavy-tailed models. Finally, these results are used to study the
implications for risk measures, credit reserves and capital requirements under stress.

The paper is structured in the following way. The second section introduces the
quantitative framework we will work in. The third section describes our approach to
implementing stress scenarios in a multi-factor credit portfolio model. In addition,
results from stressing a sample portfolio are presented. In Sect.9.4, the impact of
stress on asset correlations, default probabilities and default correlations is analyzed.
Section9.5 concludes.
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9.2 Quantitative Framework for Stress Testing

The objective of this section is the introduction of a class of multi-factor credit
portfolio models that serve as the formal framework for the implementation of stress
scenarios.

In a typical bank, the economic as well as regulatory capital charge for credit risk
far outweighs capital for any other risk class. Key drivers of credit risk capital are
concentrations in a bank’s credit portfolio, either caused by material concentrations of
exposure to individual names or large exposures to a single sector or to several highly
correlated sectors. As a consequence, the stress testing methodology for credit risk
has to be implemented in a credit portfolio model that provides sufficient flexibility
for modeling risk concentrations.

The IRB approach in Basel Committee on Banking Supervision (2006) does not
provide an appropriate quantitative framework. It is based on a credit portfolio model
that was originally designed to produce portfolio-invariant capital charges. However,
it is only applicable under the assumptions that (cf. Gordy 2003)

1. bank portfolios are perfectly fine-grained and
2. there is only a single source of systematic risk.

The simplicity of the model ensures its analytical tractability. However, it makes it
impossible to model risk concentrations in a reasonable way.

In order to develop meaningful stress tests, we need to generalize the IRB approach
to a multi-factor credit portfolio model that takes into account individual exposures
and has aricher correlation structure. In this paper, we use a structural model (Merton
1974), which links the default of a firm to the relationship between its assets and the
liabilities that it faces at the end of a given time period [0, T] .

More generally, in a structural credit portfolio model the j-th obligor defaults if
its ability-to-pay variable A; falls below a default threshold c;: the default event at
time 7T is defined as {A; < ¢;} € 2, where A} is a real-valued random variable on
the probability space (€2, A, IP) and ¢; € R. We denote the default indicator 14, <.
of the j-th obligor and its default probability P({A; < c¢;}) by I; and p; respectively.
The portfolio loss variable is defined by

L:= sz 1, 9.1)
j=1

where n denotes the number of obligors and /; is the loss-at-default of the j-th
obligor. In order to reflect risk concentrations, a joint distribution of the A; has to be
specified that captures the dependence between defaults of different obligors. This is
done via the introduction of a factor model consisting of systematic and idiosyncratic
factors. More precisely, each ability-to-pay variable A ; is decomposed into a sum of
systematic factors Wy, ..., ¥,, and an idiosyncratic [or specific] factor ¢}, that is

I A survey on credit portfolio modeling can be found in Bluhm et al. 2002 and McNeil et al. 2005
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Ajz\/giwj‘i\l—’iﬂ-,/l—R?&‘j. (92)

i=1

It is usually assumed that the vector of systematic factors ¥ = (¥4, ..., ¥,,) fol-
lows an m-dimensional normal distribution with mean 0 = (0, ..., 0) and covariance
matrix ¥ = (Xy). The systematic weights wji, ..., w;, € R determine the impact

of each systematic factor on the ability-to-pay variable A ;. The systematic weights
are scaled such that the systematic component

¢ = iji“pi (9.3)
i—1

is a standardized normally distributed variable, i.e., ¢; has mean 0 and variance 1.
The idiosyncratic factors €y, . . ., €, are standardized normally distributed variables,
they are independent of each other as well as independent of the systematic factors.
Each R? is an element of the unit interval [0, 1]. It determines the impact of the
systematic component on A; and therefore the correlation between A; and ¢;: it
immediately follows from (9.2) that

R} = Corr(A;, ¢;)*. 9-4)

In order to quantify portfolio risk, measures of risk are applied to the portfolio loss
distribution (9.1). The most widely used risk measures in banking are value-at-risk
and expected shortfall: value-at-risk VaR, (L) of L at level o € (0, 1) is simply an
a-quantile of L whereas expected shortfall of L at level « is defined by

1
ES, (L) := (1 —a)*l/ VaR, (L)du.

For most practical applications the average of all losses above the a-quantile is a
good approximation of ES, (L): for ¢ := VaR, (L) we have

ES.(L) ~E(L|L > ¢) = (1 — a)*l/L Aypo dP.

These risk measures are used to determine the economic capital, which is designed
to state with a high degree of certainty the amount of capital needed to absorb unex-
pected losses. Economic capital EC(L) is usually defined as value-at-risk VaR,, (L)
at a high level o, e.g., o = 0.9998, minus the expected loss E(L) of L:

EC(L) := VaR,(L) — E(L),

where the subtraction of the expected loss reflects the fact that only unexpected losses
are covered by economic capital.
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9.2.1 Definition of Asset and Default Correlations

The critical quantities entering the risk measures defined above are the default prob-
abilities and the risk concentrations of the default indicators /;, either specified by
default or asset correlations. In this subsection, we provide a formal definition of
these quantities, an analysis of default or asset correlations under stress is performed
in Sect.9.4.

The default or event correlation pi[} of obligors i and j, with i # j, is defined as
the correlation Corr(/;, ;) of the corresponding default indicators. Because

Var(I;) = E(I7) — p; = p; — p;.
the default correlation equals

E(f;1;) — pip;
\/(pi - p)(pj = p7)

9.5)

pi} = Corr(;, I;) =

The indicator variables /; are defined in terms of ability-to-pay variables A;,
which are typically interpreted as log-returns of asset value processes. The correlation
Corr(A;, A;) is therefore called the asset correlation pl‘f} of obligors i # j. As an
immediate consequence of (9.2), the correlation as well as the covariance of the
ability-to-pay variables of the counterparties i and j are given by

Corr(A;, A;) = Cov(A;, Aj) = \/RTZ\/R»? Z wirw j1Cov (g, Yy). (9.6)

k=1

There exists an obvious link between default and asset correlations. For given
default probabilities, the default correlation pilj)- is determined by E(/; ;) according
to (9.5), and

BULL) = P(A < i, A, Sc,«>=/ / £, u, v)dudv,
. ==/ [ &

where f;;(u, v) is the 2-dimensional joint density function of A; and A;. Hence,
default correlations depend on the joint distribution of A; and A;. If (A;, A;) is
bivariate normal the correlation of A; and A; determines the copula of their joint
distribution and hence the default correlation:

1
—(u2 — Zpl‘f}uv + vz))dudv.

—/.].
_— exp(— >
271 _plAjz —o00 J —00 2(1 _piAj )
9.7)

Note, however, that for general ability-to-pay variables outside the multivariate nor-
mal class, the asset correlations do not fully determine the default correlations.

E(L;1;) =
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9.3 Factor Stress Methodology

In this section, we describe each of the steps of the stress testing process:

1. Specification of an economic stress scenario or scenario based on the character-
istics of the portfolio

2. Translation of the scenario into constraints on the systematic factors of the credit
portfolio model

3. Quantification of the impact of the stress scenario by calculating the conditional
expected loss and other statistics of the portfolio

9.3.1 Specification of Stress Scenarios

The following classification should serve as a rough guide and distinguish different
types of stress scenarios.

1. Macroeconomic scenarios. A macroeconomic scenario usually requires the use of
a macroeconomic model. It specifies an exogenous shock to the whole economy
that is propagated over time and may impact the banking system in various ways.
This type of stress scenario is used by financial regulators or central banks in order
to gain an understanding of the resilience of financial markets or the banking
system as a whole.

2. Market shocks. These scenarios specify shocks to financial markets. This category
also includes certain shocks of a “systemic” nature affecting credit risk (such as
a sudden flight to liquidity), or sectoral shocks, for instance the deterioration
in credit spreads in the TMT (Technology Media-Telecommunications) sector.
Historical scenarios are frequently used for this type of shocks in order to increase
the plausibility of these stress scenarios.

3. Portfolio specific worst case scenarios. The objective of this worst case analysis is
to identify scenarios that are most adverse for a given portfolio. The specification
of worst case scenarios can either be based on expert judgement or quantitative
techniques.

These scenario types serve different purposes. Economic stress scenarios and market
shocks are usually specified by risk management. The objective is to quantify the
impact of a plausible economic downturn or a market shock on a credit portfolio.

The aggregated loss of portfolio specific worst case scenarios, on the other hand,
serves more as a benchmark to create some awareness of the current market situation.
The construction of these scenarios is driven by portfolio characteristics instead of
economic considerations.

Regardless of the motivation for considering a particular scenario, there exist a
number of criteria that characterize useful stress scenarios:
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1. Plausible. Stress scenarios must be realistic, e.g. have a certain probability of
actually occurring. Risk management will not take any actions based on scenarios
that are regarded as implausible.

2. Consistent. One objective is to implement stress scenarios in a way that is con-
sistent with the existing quantitative framework. This has the advantage that the
relationships between risk factors remain intact and the experience gained in the
day-to-day use of the model can be utilized in the interpretation of stress testing
results.

3. Adapted. Stress tests should include scenarios that are specifically designed for
the portfolio at hand. They should reflect certain portfolio characteristics and
particular concerns in order to give a complete picture of the risks inherent in the
portfolio.

4. Reportable. Stress scenarios should provide useful information for risk manage-
ment purposes, which can be translated into concrete actions. For reporting pur-
poses, it is crucial that the stress scenario is characterized by a clearly identifiable
set of stressed risk factors, sometimes called the “core” factors. The remaining
“peripheral” factors should then move in a consistent way with those “core” fac-
tors.

When designing specific stress scenarios, we usually focus on a small number of
directly stressed factors, e.g. those factors that correspond to the sectors of interest.
In addition, a small number of stressed factors makes it easier to transform the stress
results into concrete management actions. The response of the other risk factors is
specified by the dependence structure of the model. This approach is also a superior
way to identify risk concentrations compared to just aggregating exposures per sector,
because there it can happen that concentrations in distinct but highly correlated
sectors remain undetected.

9.3.2 Implementation of Stress Scenarios in Credit Portfolio
Models

In order to translate a given stress scenario into model constraints, a precise meaning
has to be given to the systematic factors of the portfolio model. Recall that each
ability-to-pay variable

Aj =\/R>?iwji\ll,-+,/l—R?£j

i=1

is a weighted sum of m systematic factors Wy, ..., ¥,, and one specific factor ¢;.
The systematic factors often correspond either to countries (or geographic regions)
and industries. Equity data is frequently used to construct time-series for the system-
atic factors. Statistical techniques are then applied to these time-series to derive the
joint distribution of the systematic factors. The systematic weights w;; are chosen
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according to the relative importance of the corresponding factors for the given coun-
terparty. They are either based on economic information or calculated via statistical
techniques such as linear regression.

The economic interpretation of the systematic factors is essential for implement-
ing stress scenarios in the model. The actual translation of a scenario into model
constraints is done in two steps:

1. Identification of the appropriate risk factors based on their economic interpretation
2. Truncation of their distributions by specifying upper bounds that determine the
severity of the stress scenario

Using the credit portfolio model introduced in Sect.4.2 as quantitative framework,
the specification of the model constraints is formalized as follows. A subset § C
{1, ..., m} is defined, which identifies the stressed factors V;, i € S. For each of
these factors a cap C; € R is specified. The purpose of the thresholds C;, i € S, is
to restrict the sample space of the model. More formally, the restricted sample space
Q C Qs defined by

Qi={weQ|¥w)<Cforallie S). 9.8)

In other words, w €  is an element of the restricted sample space < if none of the
stressed factors exceeds its threshold in the event w. Note that the probability P($2)
of the restricted sample space Q under the original probability measure P provides
information on the likelihood of the stress scenario.

Although the formal framework for implementing stress scenarios is simple the
actual translation of scenarios into model constraints can be rather complex depend-
ing on the specification of the scenario. If a scenario is defined in terms of con-
straints on the existing systematic country and industry factors the implementation
is straightforward. However, even the identification of systematic risk factors is a
difficult problem if the given scenario specification involves economic variables that
cannot easily be mapped to the country and industry classification used in the model,
e.g. the implementation of a drop in US house prices would require an analysis of
the potential impact on different countries and industries before the scenario can be
translated into model constraints. A more transparent approach, however, is

1. to add a US house price index to the set of systematic factors,

2. to extend the joint distribution of systematic factors in order to capture the depen-
dence between US house prices and the country and industry factors of the model
and

3. to implement this stress scenario through a constraint on the new factor.

It is important to note that the new macroeconomic factor - in the present example
the US house price index - is not included in the decomposition of the ability-to-pay
variable in (9.2), i.e. the US house price index has a weight of zero in all ability-to-pay
variables. As a consequence, the behaviour of the unstressed model is not affected.

However, the dependence between new macroeconomic factors, denoted by
1,..., &g, and the industry and country factors Wy, ... W, is captured in the

1]
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extended covariance matrix of the larger factor model (W1, ... W,,, E;, ..., E¢).Ina
stress scenario, the conditional distribution L((Wq, ... ¥,)|E1 < Ci, ..., Ex < Cy)
of the country and industry factors given the constraint on the macroeconomic factors
is used in (9.2) to obtain the stressed ability-to-pay variables. Therefore, the con-
straints on macroeconomic factors have an impact on the distribution of the country
and industry factors in a stress scenario and, consequently, also on the ability-to-pay
variables of all counterparties.

The above example illustrates that, in principle, the initial set of country and indus-
try factors can be extended by a large number of macroeconomic and market factors
in order to provide a comprehensive model for stress testing. However, the specifica-
tion of the joint distribution of these different factors (¥y, ... ¥, Ef,..., Er)isa
challenging problem due to differences in the data frequency, e.g. quarterly GDP data
versus daily market data, potential time lags between market and macroeconomic
variables, etc.

Stress tests are frequently specified by setting the respective risk factors to specific
values, e.g. a 10% drop in US house prices in a stress scenario compared to a 2%
increase in the baseline scenario. In order to implement this scenario in our model
the 10% drop has to be translated into a truncation threshold:

1. using historic house price volatility together with the baseline scenario we cali-
brate a distribution of US house price changes and

2. based on that distribution, we specify the truncation threshold C such that the
conditional mean, i.e., the average of US house price changes below C, equals
the 10% drop.

This technique can be generalized to a multi-factor stress scenario. However, if a
stress scenario is not consistent with the correlation structure of the model, e.g. if two
factors behave differently in the stress scenario although they are almost perfectly
correlated in the underlying model, it will not be possible to precisely replicate
the specified stress values through multi-dimensional thresholds. In this case, an
optimization problem has to be solved instead that results in thresholds that provide
the best possible replication but not a perfect match.

Restricting the state space through constraints on systematic factors is a flexi-
ble technique to incorporate stress scenarios into the portfolio model. So far, we
have only considered stress scenarios that are defined by truncating factor distrib-
utions. Alternatively, stress scenarios could be defined via defining more complex
constraints than simple caps on individual factors. One possibility is to restrict the
state space of the model in such a way that the dependence of particular risk factors is
increased. This technique provides an interesting alternative to simply changing cor-
relation parameters of the model. By keeping the original model parameters intact,
consistency problems are avoided such as maintaining the positive semi-definiteness
of the correlation matrix of the systematic factors.
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9.3.3 Calculation of Stressed Risk Capital

The actual calculation of the stressed loss distribution of the portfolio is done through
Monte Carlo simulation on the restricted model space (€, A, IP’), see (9.8). It is
therefore straightforward to calculate risk measures like expected loss, value-at-
risk or expected shortfall for the loss distribution under stress and to use statistical
techniques such as QQ-plots to study its behavior.

It depends on the particular purpose of a stress test which of those risk measures
is used to quantify the impact of a stress test on the credit portfolio. One possibility
is to analyze whether current capital requirements cover realized losses in stress
scenarios and to use stress tests for the calculation of the conditional expected loss.
Another application of stress tests is the analysis of future capital requirements, e.g.
the bank wishes to satisfy its EC constraint one year into the future. If the stress event
arrives within the one year horizon, then the bank will need capital sufficient to meet
its EC requirement conditional on that stress event. This type of analysis requires
the calculation of the VaR of the stressed portfolio. Finally, the future regulatory
capital requirements in stress scenarios can be assessed by recalculating the Basel 11
formula with the stressed PDs from the multi-factor model. Since regulatory capital
requirements are essential for capital management and strategic planning we regard
this impact analysis as an important component of the stress testing methodology in
a financial institution.

In the following, we will describe our approach by means of a specific scenario. As
an example, consider a downturn scenario for the automotive industry. The simplest
implementation in the portfolio model is the following restriction of the state space
of the model: only those samples are considered in the Monte Carlo simulation where
the automotive industry factor decreases by a certain percentage, say at least 2%.
In other words, the distribution of the automotive industry factor is truncated from
above at —2%. More precisely, the steps in the calculation of stressed EL and EC are:

e simulate risk factors under their original (non-stress) joint distribution,

e dismiss any simulation not satisfying the scenario constraints,

e derive EL, EC and other statistics from the loss distribution specified by the MC
scenarios that satisfy the constraints.

Note that the automotive downturn scenario does not only have an impact on the
automotive industry factor: because of correlations, other country factors as well
as industry factors are also affected. Figure9.1 shows the stressed distribution of
the automotive industry factor (left) and the impact on the factor for the chemical
industry (right): the distribution of the automobile factor has been truncated, while
the distribution of the chemical industry factor is no longer centered but has moved
to the left.”

2The distributions in Fig.9.1 can be represented in a simple way: if F,,(x) denotes the (Gaussian)
distribution of the automobile factor, its truncated distribution is given by Fut0(X)/ Fauto(—2%)
for x < —2%. The factor for the chemical industry is called an incidentally truncated variable. Its
marginal distribution is given by Fuuro,chem(—2%, ¥)/ Fauro(—2%), where Fuuio,chem denotes the
joint distribution of the two industry factors.
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Fig. 9.1 Histogram of simulated factor changes (stress case)

9.3.4 Case Study

We consider the following downturn scenario for the automotive industry: the indus-
try production is forecast to drop by 8% during next year. Using the methodology
presented in Sect. 9.3.2 this forecast is translated into a cap on the distribution of the
automobile factor.

In this case study, the stress is applied to a sample investment banking portfo-
lio, which consists of 25,000 loans with an inhomogeneous exposure and default
probability distribution. Its total exposure is 1000 mn EUR, average exposure size
is 0.004% of the total exposure and the standard deviation of the exposure size is
0.026%. Default probabilities vary between 0.02 and 27%. Figure9.2 exhibits the
portfolio’s exposure by rating class both for automotive companies and all other
borrowers.

Application of the downturn scenario yields the risk estimates shown in
Table 9.1.

These key statistics provide important information on the impact of the stress
scenario. The 99.98% confidence interval has been chosen because we use the cor-
responding value-at-risk for the EC calculation. Note that the relative EL increase of
55.6% is significantly higher than the 19% increase of the 99.98% VaR. This results
in a 16.3% increase of economic capital defined as 99.98% VaR minus EL.

Figure 9.2 exhibits the portfolio’s exposure by rating class both in the non-stress
and stress case. The analysis is done separately for automotive companies and all
other borrowers. Figure 9.2 clearly shows that exposure is shifted from investments
grades (BBB or above) to non-investment grades. As expected, the deterioration of
ratings is more pronounced for the automotive industry. Note, however, that due to
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Fig. 9.2 Exposure by rating class for automotive companies (/eft) and all other borrowers (right)
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Fig. 9.3 Left graph Density plots of original (circles) and stressed (triangles) loss distributions,
together with fitted Vasicek curves. Right graph QQ plot of original against stressed loss distribution

the dependence structure of the portfolio this stress scenario also has a significant
impact on other borrowers.

Rather than just looking at certain quantiles or other summary statistics, we can
get a better understanding of the impact of a stress scenario by studying the whole
loss distribution before and after the stress. In order to see the effect of the automotive
stress scenario on the portfolio loss, the left graph of Fig. 9.3 shows the original (cir-
cles) and the stressed (triangles) loss densities, together with fitted Vasicek distribu-
tions (curves). The corresponding QQ-plot, i.e., the quantiles of the two distributions
plotted against each other, is shown in the right graph.

The final step in this case study is the calculation of the regulatory capital require-
ments conditional on the stress event: recalculating the Basel II formula with the
stressed PDs increases the regulatory capital from 131.41 to 156.48 mn. In this
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Table 9.1 Portfolio risk estimates

Non-stress Stress % chg.
Expected loss 7.03 10.94 55.6
99.98% VaR 103.23 122.80 19.0
Expected shortfall at  99.98% 119.68 145.45 21.5
Economic capital 96.20 111.86 16.3

example, the increase of 19% is in line with the increase of the 99.98% quantile
(see Table9.1).

9.4 Stressed Correlations and Default Probabilities

In the above case study, the expected loss of the portfolio is increased by more
than 50% under stress whereas the proportional EC increase is significantly lower.
In order to better understand the high sensitivity of the expected loss we analyse
the behaviour of default probabilities in stress scenarios, see Sect.9.4.3. Whereas
default probabilities are the only relevant component for the EL, stressed EC also
depends on the correlations in the stressed model. Section9.4.2 deals with stressed
asset correlations, an analysis of stressed default correlations is part of Sect.9.4.3.
Our presentation follows Kalkbrener and Packham (2015b).

It is not surprising that the joint distribution of risk factors has a significant impact
on the behaviour of default probabilities and correlations under stress. In order to
cover a wide range of light-tailed to heavy-tailed distributions we perform our analy-
sis in factor models that follow a normal variance mixture distribution, which is
introduced in Sect.9.4.1.

9.4.1 Distribution of Model Variables

The standard approach in credit risk management is to model the risk factors and
ability-to-pay variables through a joint multi-variate normal (aka Gaussian) distri-
bution. In order to specify a more flexible dependence structure we introduce an
additional random variable W, the so-called mixing variable, which is strictly pos-
itive and independent of the systematic and idiosyncratic factors. The definition of
the ability-to-pay variables is generalized to
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Ay =W(/R S wpw + 1 - R 9.9)
i=1
=/F§iwjiwwi+ 1 - RWe; 9.10)
i=1

and the systematic and idiosyncratic risk factors now have the form WW; and We;
respectively. The ability-to-pay variables and risk factors specified in this way fol-
low a so-called multivariate normal variance mixture (NVM) distribution. The most
important distribution classes covered in this general model are the multivariate nor-
mal distribution, in which case the variable W equals 1, and the multivariate Student-¢
distribution, where W? follows an inverse gamma distribution. The Student-¢ distri-
bution allows for more extreme events than the normal distribution and is therefore
a commonly used alternative in financial modelling. Compared to the normal distri-
bution, it takes one additional parameter, the so-called degrees of freedom, denoted
by v, that controls the heaviness of the tails. For more details we refer to McNeil
et al. (2005).

In general, the tail behaviour of the risk factor W determines the so-called heav-
iness of the tails of the A;: If the tail function P(W > x) follows a power law, e.g.
P(W > x) ~ x7" for a v > 0 and large x, then the ability-to-pay variables are said
to have heavy tails. If W is bounded or its tail function decays exponentially, e.g.
P(W > x) =~ ¢~ for large x, then Ay, ..., A, are light-tailed.3 The normally dis-
tributed model and the Student-t distributed model are examples of light-tailed and
heavy-tailed models, respectively.

For the sake of simplicity, it will always be assumed that the first risk factor W\,
is truncated. We denote this factor by V := WW;.

9.4.2 Asset Correlations Under Stress

For ability-to-pay variables (or asset returns) A; and A; we denote their (uncondi-
tional) correlation by p;;, the correlation of A; with risk factor V will be denoted by
Pi-

It turns out that asset correlations are less sensitive to stress in heavy-tailed models
than in light-tailed models. For illustration, we assume that A; and A, are normally
distributed and set p;» = 0.4. Figure 9.4 shows the impact on asset correlations when
risk factor V is truncated: The left plot shows a scatter plot of 5000 simulated samples
of A; and A,. All simulated scenarios are relevant in the unstressed model. In the
right plot only those scenarios are shown where the stressed risk factor V does not
exceed a threshold C, where C is chosen such that the stress probability P(V < C)

3The precise definition is based on the theory of regular variations, see McNeil et al. (2005). Heavy-
tailed models correspond to a regularly varying tail function of W, whereas a model is light-tailed
if W is bounded or its tail function is rapidly varying.
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Fig. 9.4 Left Simulated normally distributed asset returns A and A, with correlation 0.4; A} and
Aj are correlated to the joint driving risk factor V' with correlation 0.6. Right Samples conditional
on V < —1.28 which corresponds to a stress event with probability 10%; the correlation of the
sample is 0.1, which is far smaller than the original correlation of 0.4

equals 10%. As a consequence, only approximately 500 of the 5000 scenarios are
considered under stress. Since the A; and V have a positive correlation of 0.6 the
average value of A; in the stressed model is negative, which results in a higher number
of defaults. It can also be observed that the asset correlation of 0.4 is significantly
reduced under stress, i.e., the correlation of A; and A, drops to 0.1.

For comparison, we now repeat the calculation for heavy-tailed t-distributed A;
using the same correlation assumptions as in Fig. 9.4. The left graph of Fig. 9.5 shows
stressed asset correlations, where instead of the stress level C, stress is expressed
by stress probabilities, which are just the probabilities associated with the stress
event, P(V < C). For instance, values at 10~! correspond to a stress scenario with
probability 10%. Stressed asset correlations are shown for normally distributed and
t-distributed assets with degrees of freedom v = 10 and v = 4.

Stressed asset correlations may be either greater or smaller than the unconditional
asset correlation depending largely on the correlations between the risk factor and
the respective asset returns. As illustrated in Fig. 9.5, when the assets in question are
sufficiently correlated with the risk factor, the stressed correlation is typically smaller
than the unstressed correlation. Loosely speaking, in such a case systematic risk is
reduced by conditioning on the risk factor, whereas unsystematic risk remains.

The stressed correlations in the left graph of Fig. 9.5 are calculated with analytic
formulas derived in Kalkbrener and Packham (2015a). For normally distributed asset
returns A;, A; their asset correlations conditional on stress level C are given by

pi p; Var (V) + pij — p; p;

Cort“(A;, A)) =
J @ Var€ (V) + 1= g2 Var (V) + 1= )

, (9.11)
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Fig. 9.5 Left Stressed asset correlation for different distribution assumptions as a function of the
stress probability. Right Stressed asset correlation as a function of the tail index when the stress
event is taken to the limit —oo. Correlations are as in Fig. 9.4

with
L CHO)  (B(O))
N(C) (N(C))?’

Var® (V) = 1

where ¢ denotes the standard normal density function and N denotes the standard
normal distribution function. A corresponding, but more involved, formula is also
derived for the Student ¢-distribution.

The severity of the stress is increased by setting the stress level C to higher nega-
tive values, or equivalently, reducing the probability of the stress scenario specified
by P(V < C). By letting P(V < C) converge to 0, e.g. by moving to the right in the
left graph of Fig. 9.5, we arrive at the asymptotic limit, which is of particular impor-
tance for understanding the model behaviour under stress. The right-hand side graph
of Fig.9.5 shows the asymptotic limit of stressed asset correlations for ¢-distributed
assets with different values for v, where v = oo corresponds to the normally dis-
tributed case. The asymptotic analysis confirms the higher sensitivity of light-tailed
asset variables under stress.

We have also derived concrete formulas for the asymptotic case, see Kalkbrener
and Packham (2015a). These formulas hold in the more general setup of normal
variance mixture models. For heavy-tailed NVM models the asymptotic limit of the
stressed correlation of A; and A; equals

pi pj + (pij — pi p;) (v —1)
\/(p,-z + (L =p) (=) (p; + (1= p}) (v=1)

V> 2, 9.12)

if the risk factor is stressed asymptotically, i.e., if V is truncated at a threshold C, and
C converges to —oo. The parameter v specifies the tail index of the asset returns and
the risk factor in the heavy-tailed case and corresponds just to the degrees of freedom
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defined for ¢-distributions. The case when the variables are light-tailed corresponds to
the limit as v — oo, in which case the asymptotic limit of the conditional correlation
between A; and A; is

Pij — PiPj

Ja=mda—-i

Finally, note that the analysis in this section is not restricted to credit portfolio models
but holds for any portfolio model with asset variables and risk factors that follow a
normal variance mixture distribution.

(9.13)

9.4.3 Default Probabilities and Default Correlations Under
Stress

The credit-specific quantities entering credit portfolio models are the default proba-
bilities and default correlations. Just as for asset correlations, their asymptotic behav-
iour depends on whether the credit portfolio model follows a light- or heavy-tailed
NVM distribution. In the light-tailed case, default probabilities converge to 1 under
extreme stress and default correlations converge to 0.* In other words, default of the
entire portfolio becomes a sure event under extreme stress and correlations between
default indicators become irrelevant.

In contrast, asymptotic default probabilities and asymptotic default correlations
are in (0, 1) in the heavy-tailed case. Both quantities depend on the tail index v and
can be expressed in terms of the Student z-distribution function. More specifically,
the asymptotic default probability under stress for a model with tail index v is given
by Abdous et al. (2005) and Packham et al. (2014):

Vi 1
lim P(A; < Dy|V <C) =t,4 yriim
C——o0 /1 _p%

where 1, is the distribution function of the Student-¢ distribution with parameter
v. A formula for bivariate default probabilities — albeit more involved — and an
integral representation for multivariate default probabilities that can be calculated
numerically, are derived in Packham et al. (2014).

In all models — whether heavy-tailed or light-tailed — the asymptotic limit
of stressed default probabilities and default correlations does not depend on the
unstressed default probabilities. For the heavy-tailed case, the tail index and the
unstressed correlations enter the asymptotic results.

e[1/2, 1), 9.14)

“4In this subsection, we assume that the unconditional correlations between asset returns Aq, ..., A,
and the risk factor V' are positive and less than 1, i.e., p;, pij € (0, 1) fori, j € {1,...,n}.
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In summary, the impact of stress on the asymptotic limit of default probabilities
and correlations is greater in light-tailed models than in heavy-tailed models. This is a
remarkable observation since light-tailed models, in particular normally distributed
models, are usually considered less sensitive to extreme stress than heavy-tailed
models: a popular measure in finance to assess the ability of a bivariate distribution
to generate joint extreme events — the tail dependence — is zero in light-tailed models,
whereas it is a positive number in heavy-tailed models. In order to better understand
this phenomenon we now compare the behaviour of limiting default probabilities to
tail dependence.

The tail dependence, or more precisely, the coefficient of (lower) tail dependence
of the identically distributed variables V and A, is defined as’

NV, A) = lim P(4; < CIV <C). 9.15)

Hence, the tail dependence of V and A; measures the probability P(A; < C) con-
ditional on the event {V < C} for stress levels C converging to —oo. If the NVM
distributed random variables V, A; are heavy-tailed with tail index v, the tail depen-
dence coefficient is given by

o [esna=m
)\Z(V’ Al) = 2ty+l( l+p1 )’

see McNeil et al. (2005). It follows that the tail dependence is strictly positive for
heavy-tailed models, provided that p; > —1. For light-tailed NVM distributions, the
tail dependence is zero. This includes, of course, the normal distribution, which is
still the de-facto standard for modelling risk factors and asset log-returns in structural
credit portfolio models, such as CreditMetrics " (Gupton et al. 1997) and Moody’s
KMV Portfolio Manager™ (Crosbie and Bohn 2002).

The zero tail dependence is in contrast to the asymptotic default probability in
the light-tailed case, where default is a sure event. Similarly, tail dependence and
asymptotically stressed default probabilities disagree in the heavy-tailed case. The
left graph of Fig. 9.6 illustrates the difference between tail dependence and asymptotic
stressed PD’s as a function of the tail index v.

To make the relation between tail dependence and asymptotic stressed PD’s more
precise, we introduce an additional parameter x € R and measure the probability
P(A; < x - C) conditional on the event {V < C} for stress levels C converging to
—o00. More formally, we consider the function

AV, Apx) = lim P(A; <x-ClV<0), xeR,

3In the general case, when V and A are not identically distributed, the tail dependence coefficient
is defined via quantiles, see McNeil et al. (2005).
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Fig. 9.6 Left Tail dependence coefficient and asymptotic PD under stress as a function of the tail
index v. Right Tail dependence function A\(V, Ay, x) for light- and heavy-tailed variables; special
cases arise at x = O (stressed PD’s) at x = 1 (tail dependence). The initial correlation between the
ability-to-pay variable and the risk factor is 0.6 in both cases

which provides an elegant generalization of both concepts: the tail dependence coef-
ficient of V and A; equals A\(V, A;, 1), whereas the asymptotic stressed PD corre-
sponds to A(V, Ay, 0). A closed-form expression for A(V, Ay, x) can be obtained
via elementary transformations from Abdous et al. (2005), see also Packham et al.
(2014). The tail dependence function is illustrated in the right graph of Fig.9.6.

The analysis of the function A(V, Ay, x) illustrates the fundamentally different
behaviour of the tail dependence coefficient and asymptotic stressed PD’s in light-
tailed and heavy-tailed credit portfolio models. In the light-tailed case, the asset
variable A; converges to —oo, more specifically, it is concentrated at p; - C when
V < C and C — —oo0. In the heavy-tailed case, however, A; does not show the
same uniform asymptotic behaviour: 0 < A(V, Ay, x) < 1 holds for all x € R and,
in particular, tail dependence as well as stressed default probabilities are in (0, 1).

In summary, this analysis clearly shows that the tail dependence coefficient only
provides partial information on a model’s ability to produce extreme (joint) events.
A more comprehensive picture is given by function A(V, A}, x), which also explains
the observed differences between tail dependence and asymptotic stressed PD’s.

So far, our analysis has focused on asymptotic stressed default probabilities. For
practical purposes, the model behaviour at smaller and therefore more realistic stress
levels is even more important. Hence, we now take a closer look at PD’s under stress
for various stress levels C and compare them in light- and heavy-tailed models.
Figure 9.7 shows PD’s under stress for both normally distributed and ¢-distributed
(v = 3) models as a function of the stress probabilities. The unconditional correla-
tion between the ability-to-pay variable and the risk factor is 0.6. Despite converging
to a value smaller than 1, PD’s under stress in the ¢-distributed model dominate the
normally distributed case unless the stress probability is very small: If the uncondi-
tional PD is 10%, then for stress probabilities greater than approximately 1073, the
PD under stress in the ¢-distributed model is greater than the respective PD in the
normal model. If the unconditional PD is 1%, then the threshold lies beyond 1078,
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Fig. 9.7 PD’s under stress as a function of the stress probability. Models considered are the normal
distribution and the ¢-distribution with parameter v = 5. Correlations are 0.6. Left unconditional
PD is 0.1. Right unconditional PD is 0.01
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Fig. 9.8 Risk measures for portfolio consisting of 60 homogeneous counterparties, each with a PD
of 1%. Left Value-at-risk at 99% confidence level; middle Expected loss; right Economic capital

This example shows that for realistic stress tests the impact on PD’s is usually
greater in heavy-tailed models. Only for rather extreme stress severities, stressed
PD’s become higher in light-tailed models and eventually converge to 1.

9.5 Risk Measures

The different behaviour of light-tailed and heavy-tailed models has implications
on the credit reserves and capital requirements in stress scenarios, as demonstrated
by the following stylized example. Consider a homogeneous portfolio consisting
of 60 counterparties. Each counterparty has notional and loss-at-default of 1/60
and defaults with a probability of 1%. The asset variables of the counterparties are
correlated through one risk factor, with p = 0.4 the correlation between any one
counterparty and the risk factor. This implies that the counterparties are correlated
with p? = 0.16.

Figure 9.8 shows the value-at-risk, the expected loss and the resulting economic
capital for the portfolio under different distribution assumptions, i.e., under a normal
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distribution and t-distributions with v = 4 and v = 10, and for different stress levels.
As before, the stress level C is translated into a stress probability, which denotes the
probability that a certain stress event occurs. The left graph shows the 99%-value-
at-risk of the portfolio. Despite being lower under moderate stress, the VaR in a
normally distributed model converges to 1, whereas the VaR for a very heavy-tailed
model (z-distribution with v = 4) converges to a number strictly smaller than 1, see
Packham et al. (2014) for the calculation of the asymptotic results. When comparing
the two t-distributed models, the more heavy-tailed model with v = 4 has higher risk
for moderate stress levels, but lower risk for less probable stress events.

Similar observations hold for the expected loss (middle graph). The expected loss
under stress corresponds just to the probability of default under stress, since the
recovery rate is Oin this example. The asymptotic results, Eq. (9.14), confirm that the
EL converges to 1in the light-tailed case, whereas it converges to a number strictly
smaller than 1in the heavy-tailed cases. Finally, economic capital converges to zero
for normally distributed models and to a number strictly greater than zero for heavy-
tailed models (a confidence level of 99% for economic capital may not be realistic
in practice, but serves well to illustrate some key characteristics of the stressed
portfolios). Because stress has different impact on value-at-risk and expected loss,
economic capital is not monotone, but increases under moderate stress and decreases
for greater stress levels.

To conclude, in light-tailed models, extreme stress scenarios tend to heavily
increase the credit reserves specified by the expected loss whereas economic capital,
which defines capital requirements, converges to 0. The impact of extreme stress on
expected loss and economic capital is more balanced in heavy-tailed models, whose
asymptotic limit retains a richer dependence structure.

9.6 Conclusion

In this paper, we have presented a general approach to implementing stress scenarios
in a multi-factor credit portfolio model. The general philosophy behind this type of
stress test is that stress scenarios are implemented through a restriction of the prob-
ability space of the model or, in other words, certain future scenarios are no longer
considered possible. The calculation of the stressed portfolio loss distribution is done
under a probability measure that contains additional information. The scenarios are
then implemented in a way that is consistent with the quantitative framework, i.e.,
without destroying the dependence structure of risk factors in the model. This is
achieved by translating the economic stress scenarios into constraints on the system-
atic factors. The main prerequisite here is that the systematic factors of the credit
portfolio model can be linked to economic variables.

Although the methodology has been developed in a particular factor model, the
main concept - implementing stress scenarios through a truncation of the distribution
of the risk factors - is completely independent of the model specification and the way
that default dependencies are parameterized, e.g. whether asset or default correlations
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are used. In fact, it can be applied to factor models for market and operational risk
as well. However, the model choice has significant implications for the behavior of
correlations under stress. In ordinary stress tests, stressed PD’s are usually higher in
heayy-tailed models. Contrary to popular belief, however, the impact of stress on the
asymptotic behaviour is greater in light-tailed models than in heavy-tailed models.

Disclaimer
The views expressed in this paper are those of the author and do not necessarily
reflect the position of Deutsche Bank AG.
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Chapter 10
Penalized Independent Factor

Y. Chen, R.B. Chen and Q. He

Abstract We propose a penalized independent factor (PIF) method to extract inde-
pendent factors via a sparse estimation. Compared to the conventional independent
component analysis, each PIF only depends on a subset of the measured variables and
is assumed to follow a realistic distribution. Our main theoretical result claims that
the sparse loading matrix is consistent. We detail the algorithm of PIF, investigate its
finite sample performance and illustrate its possible application in risk management.
We implement the PIF to the daily probability of default data from 1999 to 2013.
The proposed method provides good interpretation of the dynamic structure of 14
economies’ global default probability from pre-Dot Com bubble to post-Sub Prime
crisis.

10.1 Introduction

Sovereign default probability reflects financial vulnerability and sovereign financing
or refinancing difficulties or default of advanced and emerging market economies. It
is considered as a fundamental early warning indicator of financial crises and conta-
gions of global financial markets. Thus, sovereign credit ratings and the associated
sovereign default rates continue to be a major concern of international financial mar-
kets and economic policy makers. According to the current version of Basel Capital
Accord 3, financial institutions will be allowed to use credit ratings and the corre-
sponding default rates to determine the amount of regulatory capital they have to
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reserve against their credit risks. It prompts the booming research interests on the
determinants and co-movements of sovereign defaults.

While the large amount of information containing in the sovereign default data
makes it possible to understand the dependence among economies, the massive sam-
ple size, high dimensionality and complex dependence structure of the data create
computational and statistical challenges. It turns out that data analysis in a reduced
space often accompanies with improved interpretability and estimation accuracy.
This possibly explains the wide adoption of factor models in literature.

Factor models try to decipher complex phenomena of large dimensional data
through a small number of basic causes or factors. Though the factors are often sup-
posed to be macroeconomic and financial determinants, our study intends to launch a
new investigation into the identification of factors of sovereign default probabilities in
adata-driven way. From a statistical viewpoint, understanding the dependence among
these sovereign default probabilities relies on the estimation of the joint probability
distribution of the multiple variables. The conventional methods such as Principal
Component Analysis (PCA) and Factor Analysis (FA) extract a set of uncorrelated
factors from the multivariate and dependent data within a linear framework. Under
Gaussianity, non-correlation is identical to independence. With the aid of Jacobian
transformation, the complex joint distribution can be obtained by using the marginal
distributions of each factor in a closed form. Thus, the high dimensional statistical
problem is converted to univariate cases. Independence however does not hold, if the
measured variables e.g. the sovereign default probabilities are not Gaussian distrib-
uted, which is most likely in practice. In this case, the joint distribution estimation
cannot be easily solved with the help of the conventional methods.

The recently developed Independent Component Analysis (ICA) method sheds
lights on possible solutions. Similar to the PCA and FA methods, the ICA iden-
tifies essential factors via a linear transformation. Instead of projecting onto the
eigenvectors of the covariance matrix as PCA does, the ICA directly extracts statis-
tical independent factors from the original complex data via solving an optimization
problem on statistical cross-independence. Depending on the definition of indepen-
dence, various estimation methods have been proposed, including the maximization
of nongaussianity (Jones and Sibson 1987; Cardoso and Souloumiac 1993; Hyviri-
nen and Oja 1997), the minimization of mutual information (Comon 1994; Hyvirinen
1998, 1999a), the maximum likelihood estimation (Pham and Garat 1997; Bell 1995;
Hyvirinen 1999b), and the local parametric estimation with time varying loading
(Chen et al. 2014).

In high dimensional space, however, ICA leads to redundant dependence by
assuming each factor is associated with all the measured variables. The overpara-
metrization is solvable by either reducing the number of factors or simplifying the
structure of the loading matrix. Wu et al. (2006) proposed an ordering approach
based on the mean-square-error criterion to identify the number of ICs. This dimen-
sion reduction eventually accompanies with loss of information. On the other hand,
the dependence between the measured sovereign default probabilities and the factors
can be sparse. A possibly more realistic situation is that each measured variable is
only driven by a few factors, while others depend on a possibly different set of fac-
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tors. It suggests necessity to reduce dimensionality in parameter space, with a sparse
loading matrix.

Sparse estimation has been widely used especially in the regularized regression
analysis. Under the sparsity assumption, unnecessary dependence is penalized and
insignificant coefficients are pushed to zeros, see e.g. Lasso (Tibshirani 1996), Ridge
(Frank and Friedman 1993) and the smoothly clipped absolute deviation (SCAD)
penalty (Fan and Li 2001) and so on. The adoption of sparsity in independent com-
ponent analysis is still new. Hyvirinen and Raju (2002) proposed sparse Bayesian
ICA, where the loading matrix is assumed to be random and a conjugate sparse prior
is imposed to the loading matrix. Zhang et al. (2009) incorporated adaptive Lasso in
the maximum likelihood estimation method to obtain sparse loading matrix, where
the statistical independent factors are assumed to follow a simple distribution fam-
ily with one parameter. Theoretical properties of the estimators are unknown in the
above works.

We are motivated to propose a penalized independent component analysis method,
named PIF, to extract statistical independent factors via a sparse linear transformation.
The sparse loading matrix is estimated under normal inverse Gaussian distributional
assumption with SCAD penalty. Our main theoretical result claims that the sparse
loading matrix estimator is consistent. The proposed PIF method displays appealing
performance in simulation study. We implement the PIF to the daily probability
of default data of Corporate Vulnerability Index from 1999 to 2013. The proposed
method shows superior interpretation of the dynamic structure of 14 economies’
global default probability from the pre-Dot Com bubble period to the post-Sub Prime
crisis period.

The remainder of the paper is structured as follows. Section 10.2 details the
sovereign default probability data. Section 10.3 presents the penalized independent
factor method, the estimation procedure and statistical prosperity of the estima-
tor. Its finite sample performance is investigated along with simulation study in
Sect. 10.4. Section 10.5 implements the PIF method to the sovereign default proba-
bilities. Section 10.6 concludes.

10.2 Data

We consider the sovereign default probabilities of 14 economies from 1" April 1999
to 31°" December 2013. The data are the equally-weighted Corporate Vulnerabil-
ity Index (CVI), proxies of sovereign default probability, maintained in the Credit
Research Initiative, Risk Management Institute at National University of Singapore.
The CVI of each economy is constructed by averaging of all the listed firms’ proba-
bility of default (PD) in the corresponding exchange. It is worth mentioning that the
number of firms considered over the time horizon is not fixed, given the happening of
default events and IPOs. For example, on 1** Apr 1999, there were 717 firms listed in
the stock exchange of China, and on 31*" Dec 2013, the number of listed firms went
up to 3017. The PDs were computed using the forward intensity approach in Duan
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Fig. 10.1 Time series plot of the 14 economies CVI data. Gray shadow is the Dot Com bubble
period and light greed shadow is the Sub Prime crisis

et al. (2012) with input variables of common economic factors including e.g. stock
index returns and 3-month interest rates, and firm specific factors of e.g. distance to
default, ratio of cash (equivalent) to total assets, return on assets, market to book ratio
and 1-year idiosyncratic volatility. The 14 economies include 9 advanced economies
of Hong Kong, Japan, US, Germany, Greece, Ireland, Italy, Spain, and UK, and 5
emerging ones of China, India, Indonesia, Russian and Brazil.

Figure 10.1 displays the movements of the 14 CVIs from 1999 to 2013. To u