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Preface to the Third Edition

The third edition of Applied Quantitative Finance moves the focus to risk

management. As a consequence, we changed the basic structure from four to three

chapters with many more contributions to market and credit risk. We revisit

important market risk issues in Chap. 1. Chapter 2 introduces novel concepts in

credit risk along with renewed quantitative methods being proposed accordingly.

A wider range of coverage in recent development of credit risk and its management

is presented in this version. The last chapter is on dynamics of risk management and

includes risk analysis of energy markets and for cryptocurrencies. Digital assets,

such as block chain-based currencies, become popular but are theoretically

challenging when based on conventional methods. A modern text mining method

called Dynamic Topic Modelling is introduced in detail and applied to the message

board of Bitcoins. A time-varying LASSO technique for tail events is at the heart of

a new financial risk meter. This third edition brings together modern risk analysis

based on quantitative methods and textual analytics for the need of the new

challenges in banking and finance.

Berlin/Giessen, Germany Wolfgang Karl Härdle

April 2017 Cathy Yi-Hsuan Chen

Ludger Overbeck
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Market Risk



Chapter 1

VaR in High Dimensional Systems-A

Conditional Correlation Approach

H. Herwartz, B. Pedrinha and F.H.C. Raters

Abstract In empirical finance, multivariate volatility models are widely used to

capture both volatility clustering and contemporaneous correlation of asset return

vectors. In higher dimensional systems, parametric specifications often become

intractable for empirical analysis owing to large parameter spaces. On the contrary,

feasible specifications impose strong restrictions that may not be met by financial

data as, for instance, constant conditional correlation (CCC). Recently, dynamic

conditional correlation (DCC) models have been introduced as a means to solve the

trade off between model feasibility and flexibility. Here, we employ alternatively

the CCC and the DCC modeling framework to evaluate the Value-at-Risk associated

with portfolios comprising major U.S. stocks. In addition, we compare their perfor-

mances with corresponding results obtained from modeling portfolio returns directly

via univariate volatility models.

H. Herwartz · F.H.C. Raters (B)

Department of Economics, University of Göttingen, Humboldtallee 3,
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1.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed on spec-

ulative markets, motivated the introduction of autoregressive conditionally het-

eroskedastic (ARCH) processes by Engle (1982) and its popular generalizations

by Bollerslev (1986) (Generalized ARCH, GARCH) and Nelson (1991) (Exponen-

tial GARCH). Being univariate in nature, however, these models neglect a further

stylized feature of empirical price variations, namely contemporaneous correlation

over a cross section of assets, stock or foreign exchange markets (Engle et al. 1990a;

Hamao et al. 1990; Hafner and Herwartz 1998; Lee and Long 2009).

The covariance between asset returns is of essential importance in finance. Effec-

tively, many problems in financial theory and practice, such as asset allocation,

hedging strategies or Value-at-Risk (VaR) evaluation, require some formalization

not merely of univariate risk measures but rather of the entire covariance matrix

(Bollerslev et al. 1988; Cecchetti et al. 1988). Similarly, pricing of options with

more than one underlying asset will require some (dynamic) forecasting scheme for

time varying variances and covariances as well (Duan 1995).

When modeling time dependent second order moments, a multivariate model is

a natural framework to take cross sectional information into account. Over recent

years, multivariate volatility models have been attracting high interest in econometric

research and practice. Popular examples of multivariate volatility models comprise

the GARCH model class recently reviewed by Bauwens et al. (2006). Numerous

versions of the multivariate GARCH (MGARCH) model suffer from huge parameter

spaces. Thus, their scope in empirical finance is limited since the dimension of vector

valued systems of asset returns should not exceed five (Ding and Engle 2001). Factor

structures (Engle et al. 1990b) and so-called correlation models (Bollerslev 1990)

have been introduced to cope with the curse of dimensionality in higher dimensional

systems. The latter start from univariate GARCH specifications to describe volatility

patterns and formalize in a second step the conditional covariances implicitly via

some model for the systems’ conditional correlations. Recently, dynamic conditional

correlation models have been put forth by Engle (2002), Engle and Sheppard (2001)

and Tse and Tsui (2002) that overcome the restrictive CCC pattern (Bollerslev 1990)

while retaining its computational feasibility.

Here, we will briefly review two competing classes of MGARCH models, namely

the half-vec model family and correlation models. The latter will be applied to eval-

uate the VaR associated with portfolios comprised by stocks listed in the Dow Jones

Industrial Average (DJIA) index. We motivate the idea for VaR backtesting and ref-

erence the recent literature on (un)conditional VaR coverage tests. We compare the

performance of models building on constant and dynamic conditional correlation.

Moreover, it is illustrated how a univariate volatility model performs in comparison

with both correlation models.

The remainder of this paper is organized as follows. The next section introduces

the MGARCH model and briefly mentions some specifications that fall within the

class of so-called half-vec MGARCH models. Correlation models are the focus
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of Sect. 1.3 where issues like estimation or inference within this model family are

discussed in some detail. In Sect. 1.4, we motivate and discuss VaR backtesting by

means of (un)conditional coverage. An empirical application of basic correlation

models to evaluate the VaR for portfolios comprising U.S. stocks is provided in

Sect. 1.5.

1.2 Half-Vec Multivariate GARCH Models

Let εt = (ε1t , ε2t , . . . , εNt )
⊤ denote an N -dimensional vector of serially uncorrelated

components with mean zero. The latter could be directly observed or estimated from a

multivariate regression model. The process εt follows a multivariate GARCH process

if it has the representation

εt |Ft−1 ∼ N (0, �t ),�t = [σi j,t ], (1.1)

where �t is measurable with respect to information generated up to time t − 1, for-

malized by means of the filtration Ft−1. The N × N conditional covariance matrix,

�t = E[εtε
⊤
t |Ft−1], has typical elements σi j,t with i = j (i �= j) indexing condi-

tional variances (covariances). In a multivariate setting, potential dependencies of

the second order moments in �t on Ft−1 become easily intractable for practical

purposes.

The assumption of conditional normality in (1.1) allows to specify the likeli-

hood function for observed processes εt , t = 1, 2, . . . , T . In empirical applications

of GARCH models, it turned out that conditional normality of speculative returns

is more an exception than the rule. Maximizing the misspecified Gaussian log-

likelihood function is justified by quasi maximum likelihood (QML) theory. Asymp-

totic theory on properties of the QML estimator in univariate GARCH models is well

developed (Bollerslev and Wooldridge 1992; Lee and Hansen 1994; Lumsdaine 1996

and a few results on consistency Jeantheau 1998) and asymptotic normality Comte

and Lieberman (2003); Ling and McAleer (2003) have been derived for multivariate

processes.

The so-called half-vec specification encompasses all MGARCH variants that are

linear in (lagged) second order moments or squares and cross products of elements

in (lagged) εt . Let vech(B) denote the half-vectorization operator stacking the ele-

ments of a (m × m) matrix B from the main diagonal downwards in a m(m + 1)/2

dimensional column vector. We concentrate the formalization of MGARCH models

on the MGARCH(1,1) case which is, by far, the dominating model order used in the

empirical literature (Bollerslev et al. 1994). Within the half-vec representation of the

GARCH(1, 1) model �t is specified as follows:

vech(�t ) = c + A vech(εt−1ε
⊤
t−1) + G vech(�t−1). (1.2)
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In (1.2), the matrices A and G each contain {N (N + 1)/2}2 elements. Deterministic

covariance components are collected in c, a column vector of dimension N (N +
1)/2. On the one hand, the half-vec model in (1.2) allows a very general dynamic

structure of the multivariate volatility process. On the other hand, this specification

suffers from huge dimensionality of the relevant parameter space which is of order

O(N 4). In addition, it might be cumbersome or even impossible in applied work to

restrict the admissible parameter space such that the time path of implied matrices

�t is positive definite.

To reduce the dimensionality of MGARCH models, numerous avenues have been

followed that can be nested in the general class of half-vec models. Prominent exam-

ples in this vein of research are the Diagonal model (Bollerslev et al. 1988), the

BEKK model (Baba et al. 1990; Engle and Kroner 1995), the Factor GARCH (Engle

et al. 1990b), the orthogonal GARCH (OGARCH) (Alexander 1998, 2001) or the

generalized OGARCH model put forth by Van der Weide (2002). Evaluating the

merits of these proposals requires to weight model parsimony and computational

issues against the implied loss of generality. For instance, the BEKK model is con-

venient to allow for cross sectional dynamics of conditional covariances, and weak

restrictions have been formalized keeping �t positive definite over time (Engle and

Kroner 1995). Implementing the model will, however, involve simultaneous estima-

tion of O(N 2) parameters such that the BEKK model has been rarely applied in

higher dimensional systems (N > 4). Factor models build upon univariate factors,

such as an observed stock market index (Engle et al. 1990b) or underlying principal

components (Alexander 1998, 2001). The latter are assumed to exhibit volatility

dynamics which are suitably modeled by univariate GARCH-type models. Thereby,

factor models drastically reduce the number of model parameters undergoing simul-

taneous estimation. Model feasibility is, however, paid with restrictive correlation

dynamics implied by the (time invariant) loading coefficients. Moreover, it is worth-

while mentioning that in case of factor specifications still O(N ) parameters have to

be estimated jointly when maximizing the Gaussian (quasi) likelihood function.

1.3 Correlation Models

1.3.1 Motivation

Correlation models comprise a class of multivariate volatility models that is not

nested within the half-vec specification. Similar to factor models, correlation models

circumvent the curse of dimensionality by separating the empirical analysis in two

steps. First, univariate volatility models are employed to estimate volatility dynamics

of each asset specific return process εi t , i = 1, . . . , N . In a second step �t is obtained

imposing some parsimonious structure on the correlation matrix (Bollerslev 1990).

Thus, in the framework of correlation models we have
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�t = Vt (θ)Rt (φ)Vt (θ), (1.3)

where Vt = diag(
√

σ11,t , . . . ,
√

σN N ,t ) is a diagonal matrix having as typical ele-

ments the square roots of the conditional variances estimates σi i,t . The latter could

be obtained from some univariate volatility model specified with parameter vectors

θi stacked in θ = (θ⊤
1 , . . . , θ⊤

N )⊤. If univariate GARCH(1,1) models are used for the

conditional volatilities σi i,t , θi will contain 3 parameters such that θ is of length 3N .

Owing to its interpretation of a correlation matrix, the diagonal elements in R(φ) are

unity (ri i = 1, i = 1, . . . , N ). From the general representation in (1.3) it is apparent

that alternative correlation models particularly differ with regard to the formalization

of the correlation matrix Rt (φ) specified with parameter vector φ.

In this section, we will highlight a few aspects of correlation models. First, a log-

likelihood decomposition is given that motivates the stepwise empirical analysis.

Then, two major variants of correlation models are outlined, the early CCC model

(Bollerslev 1990) and the DCC approach introduced by Engle (2002) and Engle and

Sheppard (2001). Tools for inference in correlation models that have been applied

in the empirical part of the paper are collected in an own subsection. Also, a few

remarks on recent generalizations of the basic DCC specification are provided.

1.3.2 Log-Likelihood Decomposition

The adopted separation of volatility and correlation analysis is motivated by a decom-

position of the Gaussian log-likelihood function (Engle 2002) applying to the model

in (1.1) and (1.3):

l(θ,φ) = −1

2

{

T
∑

t=1

N log(2π) + log(|�t |) + ε⊤
t �−1

t εt

}

= −1

2

{

T
∑

t=1

N log(2π) + 2 log(|Vt |) + log(|Rt |) + ε⊤
t �−1

t εt

}

=
T

∑

t=1

lt (θ,ϕ),

lt (θ,φ) = lV
t (θ) + lC

t (θ,φ), (1.4)

lV
t (θ) = −1

2

{

N log 2π + 2 log(|Vt (θ)|) + ε′
t Vt (θ)

−2εt

}

(1.5)

lC
t (θ,φ) = −1

2

(

log |Rt (φ)| + v⊤
t Rt (φ)−1vt − v⊤

t vt

)

. (1.6)
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According to (1.5) and (1.6), the maximization of the log-likelihood function may

proceed in two steps. First, univariate volatility models are used to maximize the

volatility component, lV
t (θ), and conditional on first step estimates θ̂, the correlation

part lC
t (θ,φ) is maximized in a second step. To perform a sequential estimation

procedure efficiently, it is required that the volatility and correlation parameters

are variation free (Engle et al. 1983) meaning that there are no cross relationships

linking single parameters in θ and φ when maximizing the Gaussian log-likelihood

function. In the present case, the parameters in θ will impact on vt = V −1
t εt , vt =

(v1t , v2t , . . . , vNt )
⊤, and, thus, the condition necessary to have full information and

limited information estimation equivalent is violated. Note, however, that univariate

GARCH estimates (θ̂) will be consistent. Thus, owing to the huge number of available

observations which is typical for empirical analyses of financial data, the efficiency

loss involved with a sequential procedure is likely to be smaller in comparison with

the gain in estimation feasibility.

1.3.3 Constant Conditional Correlation Model

Bollerslev (1990) proposes a constant conditional correlation (CCC) model

σi j,t = ri j
√

σi i,tσ j j,t , i, j = 1, . . . , N , i �= j. (1.7)

Given positive time paths of the systems’ volatilities, positive definiteness of �t is

easily guaranteed for the CCC model (|ri j | < 1, i �= j). As an additional objective of

this specification, it is important to notice that the estimation of the correlation pattern

may avoid iterative QML estimation of the {N (N − 1)/2} correlation parameters ri j

comprising Rt (φ) = R. Instead, one may generalize the idea of variance targeting

(Engle and Mezrich 1996) towards the case of correlation targeting. Then, D =
E[vtv

⊤
t ] is estimated as the unconditional covariance matrix of standardized returns,

vt = V −1
t εt , and R is the correlation matrix implied by D. With ′⊙′ denoting matrix

multiplication by element, we have formally

R̂ = D̂∗−1/2 D̂ D̂∗−1/2, D̂ = 1

T

T
∑

t=1

vtv
⊤
t , D̂∗ = D̂ ⊙ IN . (1.8)

The price paid for the feasibility of CCC is, however, the assumption of a rather

restrictive conditional correlation pattern which is likely at odds with empirical sys-

tems of speculative returns. Applying this model in practice therefore requires at

least some pretest for constant correlation (Tse 2000; Engle 2002).
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1.3.4 Dynamic Conditional Correlation Model

The dynamic conditional correlation model introduced by Engle (2002) and Engle

and Sheppard (2001) preserves the analytic separability of the models’ volatilities and

correlations, but allows a richer dynamic structure for the latter. For convenience, we

focus the representation of the DCC model again on the DCC(1,1) case formalizing

the conditional correlation matrix Rt (φ) as follows:

Rt (φ) = {Q∗
t (φ)}−1/2 Qt (φ){Q∗

t (φ)}−1/2, Q∗
t (φ) = Qt (φ) ⊙ IN , (1.9)

with

Qt (φ) = R(1 − α − β) + αvt−1v
⊤
t−1 + βQt−1(φ) (1.10)

and R is a positive definite (unconditional) correlation matrix of vt .

Sufficient conditions guaranteeing positive definiteness of the time path of con-

ditional covariance matrices �t implied by (1.3), (1.9) and (1.10) are given in Engle

and Sheppard (2001). Apart from well known positivity constraints to hold for the

univariate GARCH components, the DCC(1,1) model will deliver positive definite

covariances if α > 0, β > 0 while α + β < 1 and λmin , the smallest eigenvalue of

R, is strictly positive, i.e. λmin > δ > 0. It is worthwhile to point out that the DCC

framework not only preserves the separability of volatility and correlation estimation,

but also allows to estimate the nontrivial parameters in R via correlation targeting

described in (1.8).

Given consistent estimates of unconditional correlations ri j , i �= j, the remaining

parameters describing the correlation dynamics are collected in the two-dimensional

vector ϕ = (α,β)⊤. Note that making use of correlation targeting the number of

parameters undergoing nonlinear iterative estimation in the DCC model is constant

(= 2), and, thus, avoids the curse of dimensionality even in case of very large systems

of asset returns.

Instead of estimating the model in three steps, one could alternatively estimate

the unconditional correlation parameters in R and the coefficients in ϕ jointly. Note

that the number of unknown parameters in R is O(N 2). Formal representations of

first and second order derivatives to implement the two step estimation and inference

can be found in Hafner and Herwartz (2008). We prefer the three step approach here,

since it avoids iterative estimation procedures in large parameter spaces.

1.3.5 Inference in the Correlation Models

QML-inference on significance of univariate GARCH parameter estimates is dis-

cussed in Bollerslev and Wooldridge (1992). Analytical expressions necessary to

evaluate the asymptotic covariance matrix are given in Bollerslev (1986). In the
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empirical part of the chapter, we will not provide univariate GARCH parameter esti-

mates at all to economize on space. Two issues of evaluating parameter significance

remain, inference for the correlation estimates given in (1.8) and for the estimated

DCC parameters ϕ̂. We consider these two issues in turn:

1. Inference for unconditional correlations

Conditional on estimates θ̂, we estimate R from standardized univariate GARCH

residuals as formalized in (1.8). The elements in R̂ are obtained as a nonlinear

and continuous transformation of the elements in D̂, i.e. R̂ = D̂∗−1/2

D̂ D̂∗−1/2

.

Denote with vechl(B) an operator stacking the elements below the diagonal of a

symmetric (m × m) matrix B in a {m(m − 1)/2} dimensional column vector bl =
vechl(B). Thus, r̂l = vechl(R̂) collects the nontrivial elements in R̂. Standard

errors for the estimates in r̂l can be obtained from a robust estimator of the

covariance of the (nontrivial) elements in D̂, d̂ = vech(D̂), via the delta method.

To be precise, we estimate the covariance of r̂l by means of the following result

(Ruud 2000): √
T (r̂l − rl)

L→ N
(

0,H(r̂)GH(r̂)⊤
)

, (1.11)

where G is an estimate of the covariance matrix of the elements in d, G = Ĉov(d̂),

and H(r̂) is a {N (N − 1)/2 × (N (N + 1)/2)} dimensional matrix collecting the

first order derivatives ∂rl/∂d⊤ evaluated at d̂. We determine G by means of the

covariance estimator

G = 1

T

T
∑

t=1

(vv)t (vv)⊤t , (vv)t = vech(vtv
⊤
t ) − d̂. (1.12)

The derivatives in H(r) are derived from a result in Hafner and Herwartz (2008)

as

∂rl

∂d⊤ = P⊤
N ,−(D∗ ⊗ D∗)PN + P⊤

N ,−(DD∗ ⊗ IN + IN ⊗ DD∗)PN

∂vech(D∗)

∂vech(D)⊤

and
∂vech(D∗)

∂vech(D)⊤
= −1

2
diag

[

vech
{

(IN ⊙ D)−3/2
}]

,

where the matrices PN ,− and PN serve as duplication matrices (Lütkepohl 1996)

such that (B) = PN ,−vechl(B) and (B) = PN vech(B).

2. Inference for correlation parameters

The correlation parameters are estimated by maximizing the correlation part,

lC(θ,φ), of the Gaussian (quasi) log-likelihood function. When evaluating the

estimation uncertainty associated with ϕ̂ = (α̂, β̂)⊤, the sequential character of

the estimation procedure has to be taken into account. To provide standard errors
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for QML estimates ϕ̂, we follow a GMM approach introduced in Newey and

McFadden (1994), which works in case of sequential GMM estimation under

typical regularity conditions. In particular, it is assumed that all steps of a sequen-

tial estimation procedure are consistent. The following result on the asymptotic

behavior of γ̂ = (θ̂⊤, ϕ̂⊤)⊤ applies:

√
T (γ̂ − γ)

L→ N (0,N −1M(N −1)⊤). (1.13)

In (1.13), M is the (estimated) expectation of the outer product of the scores of

the log-likelihood function evaluated at γ̂,

M = 1

T

T
∑

t=1

(

∂lt

∂γ

)(

∂lt

∂γ

)⊤
,

∂lt

∂γ
=

(

∂lV
t

∂θ⊤ ,
∂lC

t

∂ϕ⊤

)⊤
. (1.14)

Compact formal representations for the derivatives in (1.14) can be found in

Hafner and Herwartz (2008) and Bollerslev (1986). The matrix N in (1.13) has

a lower block diagonal structure containing (estimates) of expected second order

derivatives, i.e.

N =
(

N11 0

N21 N22

)

,

with

N11 = 1

T

T
∑

t=1

∂2lV
t

∂θ∂θ⊤ , N21 = 1

T

T
∑

t=1

∂2lC
t

∂ϕ∂θ⊤ , N22 = 1

T

T
∑

t=1

∂2lC
t

∂ϕ∂ϕ⊤ .

Formal representations of the latter second order quantities are provided in Hafner

and Herwartz (2008).

1.3.6 Generalizations of the DCC Model

Generalizing the basic DCC(1,1) model in (1.9) and (1.10) towards higher model

orders is straightforward and in analogy to the common GARCH volatility model.

In fact, it turns out that the DCC(1,1) model is often sufficient to capture empirical

correlation dynamics (Engle and Sheppard 2001). Tse and Tsui (2002) propose a

direct formalization of the dynamic correlation matrix Rt as a weighted average of

unconditional correlation, lagged correlation and a local correlation matrix estimated

over a time window comprising the M most recent GARCH innovation vectors

ξt−i , i = 1, ..., M, M ≥ N . As discussed so far, dynamic correlation models are

restrictive in the sense that asset specific dynamics are excluded. Hafner and Franses

(2003) discuss a generalized DCC model where the parameters α and β in (1.10) are
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replaced by outer products of N -dimensional vectors, e.g. α̃ = (α1,α2, . . . ,αN )⊤,

obtaining

Qt = R(1 − α̃α̃⊤ − β̃β̃⊤) + α̃α̃⊤ ⊙ vt−1v
⊤
t−1 + β̃β̃⊤ ⊙ Qt−1. (1.15)

From (1.15) it is apparent that implied time paths of conditional correlations show

asset specific characteristics. Similar to the generalization of the basic GARCH

volatility model towards threshold specifications (Glosten et al. 1993), one may

also introduce asymmetric dependencies of Qt on vech(vtv
⊤
t ) as in Cappiello et al.

(2006). A semiparametric conditional correlation model is provided by Hafner et al.

(2006). In this model, the elements in Qt are determined via local averaging where

the weights entering the nonparametric estimates depend on a univariate factor as,

for instance, market volatility or market returns.

1.4 Value-at-Risk

Financial institutions and corporations can suffer financial losses in their portfolios

or treasury department due to unpredictable and sometimes extreme movements in

the financial markets. The recent increase in volatility in financial markets and the

surge in corporate failures are driving investors, management and regulators to search

for ways to quantify and measure risk exposure. One answer came in the form of

Value-at-Risk (VaR) being the minimum loss a portfolio will not exceed with a given

probability over a specific time horizon (Jorion 2007; Christoffersen et al. 2001).

For a critical review of the VaR approach see Acerbi and Tasche (2002). They also

discuss the merits of an important and closely related risk measure, the expected

shortfall. It is defined as the expected tail return conditional on a specific VaR level

and provides further sensitive insights into the loss distribution, i.e. the expected

portfolio loss when the portfolio value exceeds the VaR.

The VaR of some portfolio (.) may be defined as a one-sided confidence interval

of expected h-periods ahead losses:

VaR
(.)

t+h,ζ = �
(.)
t (1 + ξ̄t+h,ζ), (1.16)

where �
(.)
t is the value of a portfolio in time t and ξ̄t+h,ζ is a time dependent quantile

of the conditional distribution of portfolio returns ξ
(.)

t+h such that

P[ξ(.)

t+h < ξ̄t+h,ζ ] = ζ, ξ̄t+h,ζ = σt+hzζ , (1.17)

and zζ is a quantile from an unconditional distribution with unit variance. In the light

of the assumption of conditional normality in (1.1), we will take the quantiles zζ

from the Gaussian distribution. As outlined in (1.16) and (1.17), the quantities ξ̄t+h,ζ

and σt+h generally depend on the portfolio composition. For convenience, however,
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our notation does not indicate this relationship. Depending on the risk averseness of

the agent, the parameter ζ is typically chosen as some small probability, for instance,

ζ = 0.005, 0.01, 0.05.

In order to assess the performance of distinct VaR models in-sample and out-

of-sample, one can employ VaR backtesting methods. Several contributions in the

recent literature exploit the statistical properties of the empirical hit series. A literature

review and a comparative simulation study can be found in Campbell (2006). Given

ζ, a so-called hit in time t + h is defined by

hitt+h(ζ) = 1
(

�
(.)

t+h < VaR
(.)

t+h,ζ

)

.

The indicator function 1 becomes unity if the portfolio value falls below its computed

VaR and is zero otherwise. If the model is correctly specified the empirical hit rate,

ζ̂ = 1/T
∑T

t=1 hitt+h(ζ), for T → ∞ periods converges to ζ. In the empirical part,

we will exploit this fact and compare the unconditional coverage of the estimated

VaR series for the discussed volatility models.

Secondly, if the model is correctly specified, the observed hits do not provide

any serial information and they are assumed to be independent. To validate the

unconditional and conditional VaR coverage, Christoffersen (1998) suggests two

likelihood ratio tests. These tests have been widely employed in the literature on

multivariate volatility (Chib et al. 2006). A similar idea on testing the conditional

coverage, Engle and Manganelli (2004) propose a dynamic quantile test assessing an

autoregressive model on the series of centered hits by a Wald test for joint significance

of the coefficients. A linear dependency of the hits in time contradicts the VaR model

specification. Ready to use software implementations for VaR backtesting are briefly

exposed in Chap.1 Appendix.

1.5 An Empirical Illustration

1.5.1 Equal and Value Weighted Portfolios

We analyze portfolios comprised by all 30 stocks listed in the Dow Jones Industrial

Average (DJIA) over the period Jan, 2nd, 1990 to Jan, 31st, 2005. The asset returns

were computed using historical closing prices provided by Yahoo Finance. Measured

at the daily frequency, 3803 observations are used for the empirical analysis. Two

alternative portfolio compositions are considered. In the first place, we analyze a

portfolio weighting each asset equally. Returns of this equal weight portfolio (EWP)

are obtained from asset specific returns (εi t , i = 1, . . . , N ) as

ξ
(e)
t =

N
∑

i=1

w
(e)
i t εi t , w

(e)
i t = N−1.
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Secondly, we consider value weighted portfolios (VWP) determined as:

ξ
(v)
t =

N
∑

i=1

w
(v)

i t εi t , w
(v)

i t = wi t−1(1 + εi t−1)/w
(v)
t , w

(v)
t =

∑

i

wi t−1(1 + εi t−1).

Complementary to an analysis of EWP and VWP, dynamics of minimum variance

portfolios (MVP) could also be of interest. The MVP, however, will typically depend

on some measure of the assets’ volatilities and covariances. The latter, in turn, depend

on the particular volatility model used for the analysis. Since the comparison of alter-

native measures of volatility in determining VaR is a key issue of this investigation, we

will not consider MVP to immunize our empirical results from impacts of volatility

specific portfolio compositions.

Our empirical comparison of alternative approaches to implement VaR concen-

trates on the relative performance of one step ahead ex-ante evaluations of VaR

(h = 1). Note, that the (M)GARCH model specifies covariance matrices �t or uni-

variate volatilities σ2
t conditional on Ft−1. Therefore, we practically consider the

issue of two step ahead forecasting when specifying

VaR
(.)

t+1,ζ |Ft−1 = VaR(.)(σ̂2
t+1), σ̂2

t+1|Ft−1 = E[(ξ(.)
t+1)

2|Ft−1].

The performance of alternative approaches to forecast VaR is assessed by means of

the relative frequency of actual hits observed over the entire sample period, i.e.

hf
(.)

ζ = 1

3800

3802
∑

t=3

1(ξ
(.)
t < ξ̄t,ζ), (1.18)

where 1(.) is an indicator function. To determine the forecasted conditional standard

deviation entering the VaR, we adopt three alternative strategies. As a benchmark, we

consider standard deviation forecasts obtained from univariate GARCH processes

fitted directly to the series of portfolio returns ξ
(.)
t . For the two remaining strategies, we

exploit forecasts of the covariance matrix, �̂t+1 = E[εt+1ε
⊤
t+1|Ft−1], to determine

VaR. Note that given portfolio weights wt = (w1t , w2t , . . . , wNt )
⊤, the expected

conditional variance of the portfolio is σ̂2
t+1 = w⊤�̂t+1w. Feasible estimates for the

expected covariance matrix are determined alternatively by means of the CCC and

DCC model.

The empirical exercises first cover a joint analysis of all assets comprising the

DJIA. Moreover, we consider 1000 portfolios composed of 5 securities randomly

drawn from all assets listed in the DJIA. Implementing the volatility parts of both the

CCC and the DCC model, we employ alternatively the symmetric GARCH(1,1) and

the threshold GARCH(1,1) model as introduced by Glosten et al. (1993). Opposite

to the symmetric GARCH model, the latter accounts for a potential leverage effect

(Black 1976) stating that volatility is larger in the sequel of bad news (negative

returns) in comparison with good news (positive returns).
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Table 1.1 Estimation results and performance of VaR estimates. G and TG are short for

GARCH(1,1) and TGARCH(1,1) models for asset specific volatilities, respectively. D, C and U

indicate empirical results obtained from DCC, CCC and univariate GARCH(1,1) models applied

to evaluate forecasts of conditional variances of equal weight (EWP) and value weighted portfolios

(VWP). Entries in hf and s(hf) are relative frequencies of extreme losses and corresponding standard

errors, respectively

ζ · 1000 N = 30 N = 5

G TG G TG

hf hf h̄f s(h̄f) h̄f s(h̄f)

EWP

D 5.00 8.15 7.36 7.56 .033 7.13 .034

10.0 13.2 12.4 11.7 .041 11.2 .042

50.0 41.6 41.8 40.4 .075 40.3 .078

C 5.00 10.8 9.73 7.78 .034 7.36 .035

10.0 14.2 14.2 11.9 .040 11.5 .042

50.0 42.6 41.8 40.8 .074 40.7 .077

U 5.00 11.6 11.6 8.70 .036 8.36 .037

10.0 14.7 14.7 13.2 .045 12.9 .045

50.0 47.3 47.3 43.5 .076 44.0 .077

VWP

D 5.00 6.58 7.10 7.86 .033 7.55 .033

10.0 12.9 11.8 11.9 .043 11.6 .041

50.0 41.6 40.5 40.3 .076 40.4 .078

C 5.00 9.21 9.21 8.18 .036 7.90 .035

10.0 14.5 13.4 12.3 .043 12.1 .043

50.0 42.6 41.8 41.1 .072 41.3 .071

U 5.00 9.99 9.99 8.71 .037 8.62 .035

10.0 15.5 15.5 13.0 .048 12.9 .048

50.0 43.7 43.7 42.6 .095 43.2 .098

Estimation results

D α̂ 2.8e-03 2.8e-03 6.6e-03 4.5e-05 6.7e-03 4.8e-05

tα 17.5 17.3

β̂ .992 .992 .989 8.3e-05 .989 9.5e-05

tβ 1.8e+03 1.8e+03

1.5.2 Estimation Results

A few selected estimation results are given in Table 1.1. Since we investigate 30 assets

or 1000 random portfolios each containing N = 5 securities, we refrain from provid-

ing detailed results on univariate GARCH(1,1) or TGARCH(1,1) estimates. More-

over, we leave estimates of the unconditional correlation matrix R undocumented

since the number of possible correlations in our sample is N (N − 1)/2 = 435.
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Fig. 1.1 Returns, conditional volatilities and correlations for Verizon and SBC communications

The lower left part of Table 1.1 provides estimates of the DCC parameters α and

β and corresponding t-ratios for the analysis of all assets comprising the DJIA.

Although the estimated α parameter governing the impact of lagged GARCH inno-

vations on the conditional correlation matrix is very small (around 2.8·10−3 for both

implementations of the DCC model), it is significant at any reasonable significance

level. The relative performance of the CCC and DCC model may also be evaluated

in terms of the models’ log-likelihood difference. Using symmetric and asymmet-

ric volatility models for the diagonal elements of �t , the log-likelihood difference

between DCC and CCC is 645.66 and 622.00, respectively. Since the DCC spec-

ification has only two additional parameters, it apparently provides a substantial
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improvement of fitting multivariate returns. It is also instructive to compare, for

the DCC case say, the log-likelihood improvement achieved when employing uni-

variate TGARCH instead of a symmetric GARCH. Interestingly, implementing the

DCC model with asymmetric GARCH the improvement of the log-likelihood is only

236.27, which is to be related to the number of N = 30 additional model parame-

ters. Reviewing the latter two results, one may conclude that dynamic correlation is

a more striking feature of U.S. stock market returns than leverage.

The sum of both DCC parameter estimates, α̂ + β̂, is slightly below unity and,

thus, the estimated model of dynamic covariances is stationary. The lower right part of

Table 1.1 gives average estimates obtained for the DCC parameters when modeling

1000 portfolios randomly composed of five securities contained in the DJIA. We

also provide an estimator of the empirical standard error associated with the latter

average. Irrespective of using a symmetric or asymmetric specification of univariate

volatility models, estimates for α are small throughout. According to the reported

standard error estimates, however, the true α parameter is apparently different from

zero at any reasonable significance level.

The maximum over all 435 unconditional correlations is obtained for two firms

operating on the telecommunication market, namely Verizon Communications and

SBC Communications. To illustrate the performance of the DCC model and compare

it with the more restrictive CCC counterpart, Fig. 1.1 provides the return processes

for these two assets, the corresponding time paths of conditional standard deviations

as implied by TGARCH(1,1) models and the estimated time paths of conditional

correlations implied by the DCC model fitted over all assets contained in the DJIA.

Facilitating the interpretation of the results, we also give the level of unconditional

correlation.

Apparently, the univariate volatility models provide accurate descriptions of the

return variability for both assets. Not surprisingly, estimated volatility turns out to

be larger over the last third of the sample period in comparison with the first half.

Although conditional correlation estimates vary around their unconditional level,

the time path of correlation estimates exhibits only rather slow mean reversion.

Interestingly, over the last part of the sample period, the conditional correlation

measured between Verizon and SBC increases with the volatilities of both securities.

As mentioned, Verizon and SBC provide the largest measure of unconditional

correlation within the DJIA over the considered sample period. To illustrate that

time varying conditional correlation with slow mean reversion is also an issue for

bivariate returns exhibiting medium or small correlation, we provide the conditional

correlation estimates for Verizon and General Electric (medium unconditional cor-

relation) and Verizon and Boeing (small unconditional correlation) in Fig. 1.2. For

completeness, Fig. 1.3 provides empirical return processes for General Electric and

Boeing.

The upper part of Table 1.1 shows relative frequencies of realized losses exceeding

the one step ahead ex-ante VaR forecasts. We provide average relative frequencies

when summarizing the outcome for 1000 portfolios with random composition. To
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Fig. 1.2 Conditional volatilities for General Electric and Boeing and conditional correlations with

Verizon

facilitate the discussion of the latter results, all frequencies given are multiplied with

a factor of 1000.

The relative frequency of empirical hits of dynamic VaR estimates at the 5% level

is uniformly below the nominal probability, indicating that dynamic VaR estimates

are too conservative on average. For the remaining probability levels ζ = 0.5% and

ζ = 1%, the empirical frequencies of hitting the VaR exceed the nominal probability.

We concentrate the discussion of empirical results on the latter cases. With regard to

the performance of alternative implementations of VaR it is worthwhile to mention

that the basic results are qualitatively similar for EWP in comparison with VWP.

Similarly, employing an asymmetric GARCH model instead of symmetric GARCH

has only minor impacts on the model comparison between the univariate benchmark

and the CCC and DCC model, respectively. For the latter reason, we focus our discus-

sion of the relative model performance on VaR modeling for EWP with symmetric

GARCH(1,1) applied to estimate conditional variances.
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Fig. 1.3 Returns for General Electric and Boeing

Regarding portfolios composed of 30 securities, it turns out that for both probabil-

ity levels, ζ = 1% and ζ = 0.5%, the empirical frequencies of hitting the dynamic

VaR estimates are closest to the nominal level for the DCC model and worst for

modeling portfolio returns directly via univariate GARCH. Although it provides the

best empirical frequencies of hitting the VaR, the DCC model still underestimates

(in absolute value) on average the true quantile. For instance, the 0.5% VaR shows an

empirical hit frequency of 0.82% (EWP) and 0.66% (VWP), respectively. Drawing

randomly 5 out of 30 assets to form portfolios, and regarding the average empirical

frequencies of hitting the VaR estimates, we obtain almost analogous results in com-

parison with the case N = 30. The reported standard errors of average frequencies,

however, indicate that the discussed differences of nominal and empirical proba-

bilities are significant at a 5% significance level since the difference between both

exceeds twice the standard error estimates.

In summary, using the CCC and DCC model and, alternatively, univariate GARCH

specifications to determine VaR, it turns out that the former outperform the univariate

GARCH as empirical loss frequencies are closer to the nominal VaR coverage. DCC

based VaR estimates in turn outperform corresponding quantities derived under the

CCC assumption. Empirical frequencies of large losses, however, exceed the corre-

sponding nominal levels if the latter are rather small, i.e. 0.5 and 1%. This might
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indicate that the DCC framework is likely to restrictive to hold homogeneously over

a sample period of the length (more than 15 years) considered in this work. More

general versions of dynamic correlation models are available but allowance of asset

specific dynamics requires simultaneous estimation of O(N ) parameters.

Appendix: Software Packages

Various numerical programming environments provide built-in or third-party meth-

ods for analyzing conditional correlation models and Value-at-Risk backtesting tools.

In this section, we briefly point out distinct implementations for the programming

languages R, MATLAB and Stata.

Regarding the R Project, the package rmgarch (Ghalanos 2015) is suitable

for modeling and analyzing the conditional correlation models, such as CCC and

DCC. Its comprehensive function set supports the analysis of further multivariate

volatility models, such as, for instance, the generalized orthogonal GARCH model by

Van der Weide (2002). The package offers a sophisticated design of functions, time-

critical procedures are partly implemented in C/C++ and various time series statistics

are computed. The code is based on the package rugarch by the same author which

can be used to study univariate volatility models in a similar sophisticated way. In

addition, the latter package includes an implementation of the unconditional and

conditional coverage VaR tests according to Christoffersen (1998). As an alternative,

the package ccgarchNakatani (2014) might be used for the evaluation of CCC and

DCC models. Its functions were used to compute estimates and statistics quickly and

correctly in several test applications. In comparison with rmgarch, its design and

capabilities are less complex and it is restricted to conditional correlation models.

Currently, there are no efforts by the authors of both packages to support the BEKK

model.

Working with MATLAB, MathWorks’ Econometrics Toolbox supports the sim-

ulation, estimation, and forecasting of different variants of univariate GARCH-type

models. Its Risk Management Toolbox comprises an entire set of functions for assess-

ing market risk, i.e. implementations of common approaches for VaR backtesting,

which include the (un)conditional coverage tests described before. However, evalu-

ations of multivariate volatility models including CCC or DCC can be carried out by

means of the non-official MFE Toolbox. 1 It is the successor of the UCSD Toolbox by

Kevin Sheppard. 2 The MFE project implements various univariate and multivariate

volatility models and metrics. Its open source codebase is maintained and augmented

by volunteers and particularly well suited as a starting point to study the program-

ming of multivariate time series algorithms. Despite its wide range of functions, the

user should always critically question the numerical results because the MFE project

is still under development.

1Project website: https://www.kevinsheppard.com/MFE_Toolbox.
2Project website: https://www.kevinsheppard.com/UCSD_GARCH.

https://www.kevinsheppard.com/MFE_Toolbox
https://www.kevinsheppard.com/UCSD_GARCH
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The Stata software package provides the user with comfortable fitting algorithms

for conditional correlation models and diagonal half-vec models by means of the

functionmgarch. Its optimized program code proceeds rapidly and, at the same time,

computes common metrics. The Stata documentation of the implemented methods

is exemplary and might be a good complement while studying publicly available

code examples of the volatility model implementations which are investigated in this

chapter.
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Chapter 2

Multivariate Volatility Models

M.R. Fengler, H. Herwartz and F.H.C. Raters

Abstract Multivariate volatility models are widely used in finance to capture both

volatility clustering and contemporaneous correlation of asset return vectors. Here,

we focus on multivariate GARCH models. In this common model class, it is assumed

that the covariance of the error distribution follows a time dependent process condi-

tional on information which is generated by the history of the process. To provide

a particular example, we consider a system of exchange rates of two currencies

measured against the US Dollar (USD), namely the Deutsche Mark (DEM) and the

British Pound Sterling (GBP). For this process, we compare the dynamic properties

of the bivariate model with univariate GARCH specifications where cross sectional

dependencies are ignored. Moreover, we illustrate the scope of the bivariate model

by ex-ante forecasts of bivariate exchange rate densities.

2.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed on spec-

ulative markets, motivated the introduction of autoregressive conditionally het-

eroskedastic (ARCH) processes by Engle (1982) and its popular generalizations
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by Bollerslev (1986) (Generalized ARCH, GARCH) and Nelson (1991) (exponen-

tial GARCH, EGARCH). Being univariate in nature, however, such models neglect

a further stylized fact of empirical price variations, namely contemporaneous cross

correlation e.g. over a set of assets, stock market indices, or exchange rates.

Cross section relationships are often implied by economic theory. Interest rate

parities, for instance, provide a close relation between domestic and foreign bond

rates. Assuming absence of arbitrage, the so-called triangular equation formalizes the

equality of an exchange rate between two currencies on the one hand and an implied

rate constructed via exchange rates measured towards a third currency. Furthermore,

stock prices of firms acting on the same market often show similar patterns in the

sequel of news that are important for the entire market (Hafner and Herwartz 1998).

Similarly, analyzing global volatility transmission Engle et al. (1990) and Hamao

et al.(1990) found evidence in favor of volatility spillovers between the world’s

major trading areas occurring in the sequel of floor trading hours. From this point

of view, when modeling time varying volatilities, a multivariate model appears to be

a natural framework to take cross sectional information into account. Moreover, the

covariance between financial assets is of essential importance in finance. Effectively,

many problems in financial practice like portfolio optimization, hedging strategies,

or Value-at-Risk evaluation require multivariate volatility measures (Bollerslev et al.

1988; Cecchetti et al. 1988).

2.1.1 Model Specifications

Let εt = (ε1t , ε2t , . . . , εNt )
⊤ denote an N -dimensional error process, which is either

directly observed or estimated from a multivariate regression model. The process εt

follows a multivariate GARCH process if it has the representation

εt = �
1/2
t ξt , (2.1)

where �t is measurable with respect to information generated up to time t − 1,

denoted by the filtration Ft−1. By assumption, the N components of ξt follow a

multivariate Gaussian distribution with mean zero and a covariance matrix equal to

the identity matrix.

The conditional covariance matrix, �t = E[εtε
⊤
t |Ft−1], has typical elements σi j

with σi i , i = 1, . . . , N , denoting conditional variances and off-diagonal elements

σi j , i, j = 1, . . . , N , i �= j , denoting conditional covariances. To make the specifi-

cation in (2.1) feasible, a parametric description relating �t to Ft−1 is necessary. In

a multivariate setting, however, dependencies of the second order moments in �t on

Ft−1 become easily computationally intractable for practical purposes.

Let vech(A) denote the half-vectorization operator stacking the elements of a

quadratic (N × N )-matrix A from the main diagonal downwards in a 1
2

N (N + 1)

dimensional column vector. Within the so-called half-vec representation of the

GARCH(p, q) model �t is specified as follows:
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vech(�t ) = c +
q∑

i=1

Ãi vech(εt−iε
⊤
t−i ) +

p∑

i=1

G̃ i vech(�t−i ). (2.2)

In (2.2), the matrices Ãi and G̃ i each contain {N (N + 1)/2}2 elements. Deterministic

covariance components are collected in c, a column vector of dimension N (N +
1)/2. We consider in the following the case p = q = 1 since in applied work the

GARCH(1,1) model has turned out to be particularly useful to describe a wide variety

of financial market data (Bollerslev et al., 1994).

On the one hand, the half-vec model in (2.2) allows for a very general dynamic

structure of the multivariate volatility process. On the other hand, this specification

suffers from high dimensionality of the relevant parameter space, which makes it

almost intractable for empirical work. In addition, it might be cumbersome in applied

work to restrict the admissible parameter space such that the implied matrices �t , t =
1, . . . , T , are positive definite. These issues motivated a considerable variety of

competing multivariate GARCH specifications.

Prominent proposals reducing the dimensionality of (2.2) are the constant corre-

lation model (Bollerslev et al. 1988) and the diagonal model (Bollerslev et al. 1988).

Specifying diagonal elements of �t both of these approaches assume the absence of

cross equation dynamics, i.e. the only dynamics are

σi i,t = ci i + aiε
2
i,t−1 + giσi i,t−1, i = 1, . . . , N . (2.3)

To determine off-diagonal elements of �t , Bollerslev (1990) proposes a constant

contemporaneous correlation,

σi j,t = ρi j
√

σi iσ j j , i, j = 1, . . . , N , (2.4)

whereas Bollerslev et al. (1988) introduce an ARMA-type dynamic structure as in

(2.3) for σi j,t as well, i.e.

σi j,t = ci j + ai jεi,t−1ε j,t−1 + gi jσi j,t−1, i, j = 1, . . . , N . (2.5)

For the bivariate case (N = 2) with p = q = 1, the constant correlation model con-

tains only 7 parameters compared to 21 parameters encountered in the full model

(2.2). The diagonal model is specified with 9 parameters. The price that both models

pay for parsimony is in ruling out cross equation dynamics as allowed in the general

half-vec model. Positive definiteness of �t is easily guaranteed for the constant cor-

relation model (|ρi j | < 1), whereas the diagonal model requires more complicated

restrictions to provide positive definite covariance matrices.

The so-called BEKK model (Baba et al. 1990) provides a richer dynamic structure

compared to both restricted processes mentioned before. Defining N × N matrices

Aik and G ik and an upper triangular matrix C0, the BEKK model reads in a general

version as follows (see Engle and Kroner 1995):
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�t = C⊤
0 C0 +

K∑

k=1

q∑

i=1

A⊤
ikεt−iε

⊤
t−i Aik +

K∑

k=1

p∑

i=1

G⊤
ik�t−i G ik . (2.6)

If K = q = p = 1 and N = 2, the model in (2.6) contains 11 parameters and implies

the following dynamic model for typical elements of �t :

σ11,t = c11 + a2
11ε

2
1,t−1 + 2a11a21ε1,t−1ε2,t−1 + a2

21ε
2
2,t−1

+ g2
11σ11,t−1 + 2g11g21σ21,t−1 + g2

21σ22,t−1,

σ21,t = c21 + a11a22ε
2
1,t−1 + (a21a12 + a11a22)ε1,t−1ε2,t−1 + a21a22ε

2
2,t−1

+ g11g22σ11,t−1 + (g21g12 + g11g22)σ12,t−1 + g21g22σ22,t−1,

σ22,t = c22 + a2
12ε

2
1,t−1 + 2a12a22ε1,t−1ε2,t−1 + a2

22ε
2
2,t−1

+ g2
12σ11,t−1 + 2g12g22σ21,t−1 + g2

22σ22,t−1.

Compared to the diagonal model, the BEKK–specification economizes on the number

of parameters by restricting the half-vec model within and across equations. Since

Aik and G ik are not required to be diagonal, the BEKK model is convenient to

allow for cross dynamics of conditional covariances. The parameter K governs to

which extent the general representation in (2.2) can be approximated by a BEKK-

type model. In the following we assume K = 1. Note that in the bivariate case with

K = p = q = 1 the BEKK model contains 11 parameters. If K = 1, the matrices

A11 and −A11 imply the same conditional covariances. Thus, for uniqueness of the

BEKK-representation a11 > 0 and g11 > 0 is assumed. Note that the right hand side

of (2.6) involves only quadratic terms and, hence, given convenient initial conditions,

�t is positive definite under the weak (sufficient) condition that at least one of the

matrices C0 or G ik has full rank (Engle and Kroner 1995). It is worthwhile to mention

that in a similar way the univariate GARCH volatility model can be augmented by

threshold specifications (Glosten et al. 1993), a generalization for asymmetric effects

in a BEKK-type model is discussed in Kroner and Ng (1998).

2.1.2 Estimation of the BEKK Model

As in the univariate case, the parameters of a multivariate GARCH model are

estimated by maximum likelihood (ML) optimizing numerically the Gaussian log-

likelihood function.

With f denoting the multivariate normal density, the contribution of a single

observation, lt , to the log-likelihood of a sample is given as:

lt = ln{ f (εt |Ft−1)}

= − N

2
ln(2π) − 1

2
ln(|�t |) − 1

2
ε⊤

t �−1
t εt .
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Maximizing the log-likelihood, l =
∑T

t=1 lt , requires nonlinear maximization meth-

ods. Involving only first order derivatives, the BHHH algorithm introduced by Berndt

et al. (1974) is easily implemented and particularly useful for the estimation of mul-

tivariate GARCH processes.

If the actual error distribution differs from the multivariate normal, maximizing

the Gaussian log-likelihood has become popular as Quasi ML (QML) estimation.

In the multivariate framework, results for the asymptotic properties of the (Q)ML-

estimator have been derived by Jeantheau (1998) who proves the QML-estimator to

be consistent under the main assumption that the considered multivariate process is

strictly stationary and ergodic. Further assuming finiteness of moments of εt up to

order eight, Comte and Lieberman (2003) derive asymptotic normality of the QML-

estimator. The asymptotic distribution of the rescaled QML-estimator is analogous

to the univariate case and discussed in Bollerslev and Wooldridge (1992).

2.2 An Empirical Illustration

2.2.1 Data Description

We analyze daily quotes of two European currencies measured against the USD,

namely the DEM and the GBP. The sample period is December 31, 1979 to April

1, 1994, covering T = 3720 observations. Note that a subperiod of our sample has

already been investigated by Bollerslev and Engle (1993) discussing common fea-

tures of volatility processes.

Let the bivariate vector Rt denote the exchange rates (DEM/USD and GBP/USD)

at time t . Before inspecting the sample statistics ( XFGmvol01.R), we take the first

differences of the log exchange rates, εt = ln(Rt ) − ln(Rt−1). These log-differences

are shown in Fig. 2.1. Evidently, the empirical means of both processes are very

close to zero (−4.72e-06 and 1.10e-04, respectively). Also minimum, maximum

and standard errors are of similar size. As is apparent from Fig. 2.1, variations of

exchange rate log-differences exhibit an autoregressive pattern: Large log-differences

of foreign exchange rates are followed by large log-differences of either sign. This

is most obvious in periods of excessive log-differences. Note that these volatility

clusters tend to coincide in both series. It is precisely this observation that justifies a

multivariate GARCH specification.

2.2.2 Estimating Bivariate GARCH

A fast algorithm is used to estimate the BEKK representation of a bivariate GARCH

(1,1) model: QML-estimation is implemented by means of the BHHH-algorithm

which minimizes the negative Gaussian log-likelihood function. The algorithm

https://github.com/QuantLet/XFG3/tree/master/XFGmvol01
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Fig. 2.1 Foreign exchange rate data: log-differences. XFGmvol01

employs analytical first order derivatives of the log-likelihood function

Lütkepohl (1996) with respect to the 11-dimensional vector of parameters contain-

ing the elements of C0, A11 and G11 as given in (2.6). Alternatively, the R package

mgarchBEKK Schmidbauer et al. (2016) might be considered when estimating this

model in R. Section 2.3 contains further references for implementations of the BEKK

model in widely used numerical programming environments.

The estimation output contains the stacked elements of the parameter matrices

C0, A11 and G11 in (2.6) after numerical optimization of the Gaussian log-likelihood

function. Being an iterative procedure, the algorithm requires to determine suitable

initial parameters. For the diagonal elements of the matrices A11 and G11 values

around 0.3 and 0.9 appear reasonable, since in univariate GARCH(1,1) models para-

meter estimates for a1 and g1 in (2.3) often take values around 0.32 = 0.09 and

0.81 = 0.92. There is no clear guidance how to determine initial values for off diag-

onal elements of A11 or G11. Therefore, it might be reasonable to try alternative

initializations of these parameters. Given an initialization of A11 and G11, the start-

ing values for the elements in C0 are determined by the algorithm assuming the

unconditional covariance of εt to exist (Engle and Kroner 1995).

https://github.com/QuantLet/XFG3/blob/master/XFGmvol01
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Given our example under investigation, the bivariate GARCH estimation yields

a vector of coefficient estimates,

θ̂ = (.00115, .00031, .00076, .2819, −.0572, −.0504, .2934, .9389, .0251, .0275, .9391),

and a corresponding log-likelihood value l̂ = 28599 at the optimum. The first three

estimates are the parameters of the upper triangular matrix C0, the following four

belong to the ARCH (A11) and the last four to the GARCH parameters (G11), i.e. for

our model,

Fig. 2.2 Estimated variance and covariance processes, 105�̂t . XFGmvol02

https://github.com/mangrou/XFG3-Temp/blob/master/XFGmvol02
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Fig. 2.3 Simulated variance and covariance processes, both bivariate (blue) and univariate case

(green), 105�̂t . XFGmvol03

�t = C⊤
0 C0 + A⊤

11εt−1ε
⊤
t−1 A11 + G⊤

11�t−1G11, (2.7)

stated again for convenience, we find the matrices C0, A11, G11 to be:

C0 = 10−3

(
1.15 .31

0 .76

)
, A11 =

(
.282 −.050

−.057 .293

)
, G11 =

(
.939 .028

.025 .939

)
.

(2.8)

https://github.com/QuantLet/XFG3/blob/master/XFGmvol03
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2.2.3 Estimating the (co)variance Processes

The (co)variance is obtained by sequentially calculating the difference equation

(2.7) where we use the estimator for the unconditional covariance matrix as ini-

tial value (�0 = E⊤ E
T

). Here, the T × 2 matrix E contains log-differences of our

foreign exchange rate data.

We display the estimated variance and covariance processes in Fig. 2.2. The quant-

let XFGmvol02.R ss contains the code. The two upper panels of Fig. 2.2 show

the variances of the DEM/USD and GBP/USD log-differences respectively, whereas

in the lower panel we see the covariance process. Except for a very short period in

the beginning of our sample, the covariance is positive and of non-negligible size

throughout. This is evidence for cross sectional dependencies in currency markets

which we mentioned earlier to motivate multivariate GARCH models.

Instead of estimating the realized path of variances as shown above, we could

also use the estimated parameters to simulate volatility paths ( XFGmvol03.R).

For this, at each point in time an observation εt is drawn from a multivariate normal

distribution with variance �t . Given these observations, �t is updated according to

(2.7). Then, a new residual is drawn with covariance �t+1. We apply this procedure

for T = 3000. The results, displayed in the three panels of Fig. 2.3, show a similar

pattern as the original process given in Fig. 2.2. For the upper two panels, we generate

two variance processes from the same set of simulated residuals ξt . In this case,

however, we set off-diagonal parameters in C⊤
0 C0, A11 and G11 to zero to illustrate

how the unrestricted BEKK model incorporates cross equation dynamics. As can

be seen, both approaches are convenient to capture volatility clustering. Depending

on the particular state of the system, spillover effects operating through conditional

covariances, however, have a considerable impact on the magnitude of conditional

volatility.

2.3 Forecasting Exchange Rate Densities

The preceding section illustrated how the GARCH model may be employed effec-

tively to describe empirical price variations of foreign exchange rates. For practi-

cal purposes, as for instance scenario analysis, Value-at-Risk estimation (Chap.1),

option pricing (see the corresponding chapter), one is often interested in the future

joint density of a set of asset prices. Continuing the comparison of the univariate and

bivariate approach to model volatility dynamics of exchange rates, it is thus natural to

investigate the properties of these specifications in terms of forecasting performance.

We implement an iterative forecasting scheme along the following lines: Given the

estimated univariate and bivariate volatility models and the corresponding informa-

tion sets Ft−1, t = 1, . . . , T − 5 (Fig. 2.2), we employ the identified data generating

processes to simulate one-week-ahead forecasts of both exchange rates. To get a reli-

able estimate of the future density, we set the number of simulations to 5000 for each

https://github.com/QuantLet/XFG3/tree/master/XFGmvol02
https://github.com/QuantLet/XFG3/tree/master/XFGmvol03
http://dx.doi.org/10.1007/978-3-662-54486-0_1
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initial scenario. This procedure yields two bivariate samples of future exchange rates,

one simulated under bivariate, the other one simulated under univariate GARCH

assumptions.

A review of evaluating competing density forecasts is offered by Tay and Wallis

(2000). Adopting a Bayesian perspective the common approach is to compare the

expected loss of actions evaluated under alternative density forecasts. In our pure time

series framework, however, a particular action is hardly available for forecast density

comparisons. Alternatively, one could concentrate on statistics directly derived from

the simulated densities, such as first and second order moments or even quantiles.

Due to the multivariate nature of the time series under consideration, it is a nontrivial

issue to rank alternative density forecasts in terms of these statistics. Therefore,

we regard a particular volatility model to be superior to another if it provides a

higher simulated density estimate of the actual bivariate future exchange rate. This

is accomplished by evaluating both densities at the actually realized exchange rate

obtained from a bivariate kernel estimation. Since the latter comparison might suffer

from different unconditional variances under univariate and multivariate volatility,

the two simulated densities were rescaled to have identical variance. Performing

the latter forecasting exercises iteratively over 3714 time points, we can test if the

bivariate volatility model outperforms the univariate one.

To formalize the latter ideas, we define a success ratio S RJ as

S RJ = 1

|J |
∑

t∈J

1{ f̂biv(Rt+5) > f̂uni (Rt+5)}, (2.9)

where J denotes a time window containing |J | observations and 1 an indicator func-

tion. f̂biv(Rt+5) and f̂uni (Rt+5) are the estimated densities of future exchange rates

which are simulated by the bivariate and univariate GARCH processes, respectively,

and which are evaluated at the actual exchange rate levels Rt+5. The simulations are

performed in XFGmvol04.

Our results show that the bivariate model indeed outperforms the univariate one

when both likelihoods are compared under the actual realizations of the exchange

rate process. In 82.3% of all cases across the sample period, S RJ = 0.823, J =
{t : t = 1, ..., T − 5}, the bivariate model provides a better forecast. This is highly

significant. In Table 2.1, we show that the overall superiority of the bivariate volatility

Table 2.1 Time varying

frequencies of the bivariate

GARCH model

outperforming the univariate

one in terms of

one-week-ahead forecasts

(success ratio)

Time window J Success ratio SRJ

1980 1981 0.762

1982 1983 0.786

1984 1985 0.868

1986 1987 0.780

1988 1989 0.872

1990 1991 0.835

1992 04/1994 0.854

https://github.com/QuantLet/XFG3/blob/master/XFGmvol04
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Fig. 2.4 Estimated covariance process from the bivariate GARCH model (104σ̂12, blue) and success

ratio over overlapping time intervals with window length 80 days (red). XFGmvol04

approach is confirmed when considering subsamples of two-years length. A-priori,

one may expect the bivariate model to outperform the univariate one the larger (in

absolute value) the covariance between both log-difference processes is. To verify

this argument, we display in Fig. 2.4 the empirical covariance estimates from Fig. 2.2

jointly with the success ratio evaluated over overlapping time intervals of length

|J | = 80.

As is apparent from Fig. 2.4, there is a close co-movement between the success

ratio and the general trend of the covariance process, which confirms our expecta-

tions: the forecasting power of the bivariate GARCH model is particularly strong in

periods where the DEM/USD and GBP/USD exchange rate log-differences exhibit

a high covariance. For completeness, it is worthwhile to mention that similar results

are obtained if the window width is varied over reasonable choices of |J | ranging

from 40 to 150.

With respect to financial practice and research we take our results as strong support

for a multivariate approach towards asset price modeling. Whenever contemporane-

ous correlation across markets matters, the system approach offers essential advan-

tages. To name a few areas of interest, multivariate volatility models are supposed to

yield useful insights for risk management, scenario analysis and option pricing.

https://github.com/QuantLet/XFG3/blob/master/XFGmvol04
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Appendix: Software Packages

This section gives a brief overview of BEKK model implementations for the numer-

ical programming languages and environments R, MATLAB and Stata. Built-in

functions and external packages for estimating univariate and further multivariate

volatility models are briefly reviewed in Chap. 1 Appendix.

There exist two publicly available R packages which attempt to implement the

BEKK approach. Both implementations are in early stages and, therefore, com-

puted results need to be critically reviewed by the user. The package mgarchBEKK

Schmidbauer et al. (2016) might be used for simulating, estimating and predicting

BEKK models. The estimation of simulated data returns plausible results. In contrast,

the package MTS by Tsay (2015) contains a single function BEKK11 for estimating

two- or three-dimensional BEKK(1,1) models only.

MATLAB offers methods to assess univariate GARCH-type models by means

of its Econometrics Toolbox. However, there is no official MATLAB Toolbox that

implements the BEKK model. As described in Chap. 1 Appendix, the MFE Toolbox

tries to fill the gap of assessing of multivariate volatility models in MATLAB. It is the

direct successor to the UCSD Toolbox by Kevin Sheppard which is not being further

developed. The codebase might help getting insights into the technical details of

the BEKK approach. Because the toolbox is still under development, an optimized,

error-free use can not be guaranteed.

Currently, Stata supports only the analysis of univariate volatility models, diag-

onal half-vec models, which are restricted versions of the half-vec model in (2.2),

and conditional correlation models. It seems that there exists no publicly available

extension to estimate a BEKK model. As an alternative, users might employ the tools

of the independent software package JMulTi,1 which is closely related to Lütkepohl

and Krätzig (2004), for BEKK model estimation and investigation in combination

with Stata.
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Chapter 3

Portfolio Selection with Spectral Risk
Measures

S.F. Huang, H.C. Lin and T.Y. Lin

Abstract In this chapter, a portfolio selection problem with spectral risk measure is

considered. The spectral risk measure is a general family of coherent risk measures

and is capable of reflecting investor’s risk preference. A multivariate conditional

heteroscedastic model with vine copulae is employed to describe the dynamics and

dependence of the underlying asset returns. The technique of linear programming

is used to accurately and quickly determine the optimal asset allocations. Simu-

lation studies are conducted for investigating the impacts of the magnitude of tail

dependence among the underlying assets and the degrees of risk aversion on the per-

formance of the optimal portfolio. An empirical study is conducted by using the stock

prices included in the FTSE TWSE Taiwan 100 Index. Numerical results indicate

that the optimal portfolios have different reactions to different economic situations.

3.1 Introduction

In modern portfolio selection theory, the mean-variance (MV) portfolio optimization

procedure introduced by Markowitz (1952; 1959) plays a crucial role in optimal asset

allocations and investment diversification. In the MV procedure, investors attempt

to maximize their portfolio expected return for a given level of portfolio risk, or

equivalently to minimize the risk of investment with achieving a given amount of

expected return, by determining the investment proportions of various securities

(Markowitz 1952, 1959, 1991; Merton 1972; Kroll et al. 1984). The traditional MV

portfolio problem uses standard deviation as the measure of risk and assumes that the

returns of the underlying assets are independent and identically distributed (i.i.d.).
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Recently many other risk measures are more commonly used by traders in reality,

for example, the value-at-risk (VaR), the expected shortfall risk (ES) and a general

class of coherent risk measures, called the spectral risk measure (SRM). Thus, the

optimal portfolio selection problem with risk constraints rather than standard devia-

tion attracts more attention for practical implementation (Acerbi and Simonetti 2002;

Krokhmal et al. 2002; Chabaane et al. 2006; Huang and Lin 2017). Consequently,

assessing the impact regarding the selection of different risk measures on portfolio

allocation is of particular importance for asset managers.

When returns are Gaussian distributed, which is parameterized through the first

two moments, one could therefore well rely upon the MV framework and the choice

of a risk measure is purposeless (Härdle et al. 2014). The empirical study of Adam

et al. (2008) based on the monthly returns of 16 hedge funds from January 1990 to July

2001 further showed the robustness of portfolio allocation with respect to the choice

of risk measures even the samples are non-Gaussian distributed. Consequently, it

seems that the risk managers do not need to worry about the choice of risk measures

for portfolio allocation regardless of the Gaussian assumption if the asset returns are

assumed to be i.i.d.. However, many empirical studies show that hedge fund returns

often exhibit autocorrelation, and have significant negative skewness and excess

kurtosis (Giamouridis and Vrontos 2007; Harris and Mazibas 2010, 2013). This

motivates us to consider portfolio selection problem without the i.i.d. assumption

for asset returns. Furthermore, we investigate the impacts of trader’s risk attitude on

the performance of optimal portfolios under assuming the asset returns following a

multivariate time series model.

To model the autocorrelation and conditional heteroscedasticity of each underly-

ing asset, we consider the following model:

⎧

⎨

⎩

X i,t = fi,t (Xi,t−1, ai,t ),

ai,t = σi,tεi,t ,

σi,t = hi,t−1(σi,s, εi,s; s = 0, . . . , t − 1),

(3.1)

where X i,t is the log return of the i th asset at time t , fi,t is a function of Xi,t−1 =
(X i,0, X i,1, . . . , X i,t−1) and ai,t for i = 1, . . . , p, hi,t−1 is an F t−1 measurable func-

tion with Ft−1 being the set of information from time 0 up to time t − 1 and εi,t ,

t = 0, 1, . . ., are i.i.d. innovations with zero mean and unit variance for the i th asset

at time t . In addition, assets on the financial markets usually exhibit dependence.

For example, the stock prices of two companies which have a complementary rela-

tionship may both increase or decrease simultaneously by public good or bad news

(Zhang et al. 2015). Recent studies indicate that pair-copula decomposed models

represent a more flexible way to construct multivariate distributions than standard

multivariate copulae. Therefore, we model the joint distribution of εi,t , i = 1, . . . , p,

by a vine copula function. Vine copulae are able to model complex dependency pat-

terns by using a cascade of bivariate copulae (see Aas et al. 2009; Brechmann and

Schepsmeier 2013 and the references therein).

Assume that X i,t , for i = 1, . . . , p and t = 0, 1, . . ., follow model (3.1) and con-

sider the following portfolio optimization problem:
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max
ct

π(ct ) = c1,t Et (X1,t+1) + c2,t Et (X2,t+1) + · · · + cp,t Et (X p,t+1),

subject to ct ≥ 0,

p
∑

i=1

ci,t ≤ 1 and ρt (ν) ≤ L , (3.2)

where ct = (c1,t , . . . , cp,t )
⊤ with ci,t being the holding position of X i,t , ct ≥ 0 is the

no short-selling constraint,
∑p

i=1 ci,t ≤ 1 is the budget constraint, Et (·) denotes the

conditional expectation given Ft , ρt (ν) is the value of the time-t SRM with level ν,

which reflects the degrees of risk aversion, and L is a pre-specified upper bound of

risk. The main reason that we employ the SRM as the risk measure in this chapter

is its link to investor’s risk preference. The SRM is not only a general family of

coherent risk measures (for example, the ES is a special case of the SRM), but also

can reflect the degrees of risk aversion of investors since the generator of the SRM

can be obtained by a trader’s personal utility function. More details of the definition

and properties of the SRM are introduced in Sect. 3.2.

Although model (3.1) is capable of depicting the dynamics of the underlying

returns better than the traditional i.i.d. assumption, the corresponding computation

of determining the optimal asset allocations in (3.2) becomes complicated. Harris

and Mazibas (2013) considered a portfolio selection problem with the ES being the

risk measure and employed an AR(1)-EGARCH(1,1) model to depict the marginal

dynamics of the return process for each underlying asset. Moreover, they used copulae

to model the dependence between the underlying assets. Since the linearization of the

optimal portfolio selection problem under this realistic but complex model is difficult

and not available yet in the literature, the method based on Monte Carlo simulation

is proposed to obtain the optimal asset allocations. However, the simulation based

method could be time consuming and the simulation biases could lead to wrong

decision, especially when the optimal solution occurs on the boundary.

In the literature, linear programming (LP) is widely used in portfolio selection

under the i.i.d. assumption. LP is a fast algorithm to obtain accurate estimates of

the optimal asset allocations, especially when the optimal solution occurs on the

boundary. Due to the principal that potential return rises with an increase in risk, the

optimal solution of the portfolio selection problem usually occurs on the boundary

and thus LP is a suitable technique for solving it. For example, Markowitz (1952)

used LP to solve the MV portfolio selection problem. Rockafellar and Uryasev (2000)

considered portfolio selection problem with ES and proposed a linearization to select

the optimal portfolio by LP. Recently, Huang and Lin (2017) proposed a linearization

scheme to approximate the original portfolio selection problem and then obtain the

optimal asset allocations by LP when the SRM is used as the risk measure.

In the simulation study, we conduct several scenarios to investigate the accuracy of

the proposed LP for obtaining the optimal allocations, the effects of the magnitude of

tail dependence and the degrees of risk aversion on the performance of the optimal

portfolio. We also conduct empirical studies by using the underlying stock prices

included in FTSE TWSE Taiwan 100 Index. Our empirical results indicate that the

optimal portfolios have different reactions to different economic situations.
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The remainder of this chapter is organized as follows. Section 3.2 reviews some

backgrounds including coherent measures of risk, utility functions, SRM and vine

copulae. The LP of Huang and Lin (2017) for solving (3.2) with model (3.1) is

introduced in Sect. 3.3. Simulation studies are presented in Sect. 3.4. Section 3.5

demonstrates empirical results by using the stock prices included in the FTSE TWSE

Taiwan 100 Index. Concluding remarks are given in Sect. 3.6. Computational details

are presented in the Appendix.

3.2 Backgrounds

3.2.1 Coherent Measures of Risk

Let G be the set of random portfolio returns, ρ be a risk measure, which is a mapping

from G into R, and X denote the return of an asset.

(A1) Translation invariance: If A is a deterministic portfolio with guaranteed return

α, then for all X ∈ G we have ρ(X + A) = ρ(X) − α.

(A2) Subadditivity: For all X and Y ∈ G, ρ(X + Y ) � ρ(X) + ρ(Y ).

(A3) Positive homogeneity: For all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X)

(A4) Monotonicity: For all X and Y ∈ G with X ≤ Y , we have ρ(Y ) ≤ ρ(X).

(A5) Law invariance: For any portfolio returns X and Y with distribution function

FX and FY , respectively, if FX = FY , then ρ(X) = ρ(Y ).

(A6) Comonotonic additivity: For any comonotonic random variables X and Y ,

ρ(X + Y ) = ρ(X) + ρ(Y ).

A risk measure satisfying (A1)–(A4) is called coherent (Artzner et al. 1999).

Unfortunately, the popular risk measure, VaR, is not coherent since VaR fails to

comply with the subadditivity property and thus does not provide good incentives

with respect to portfolio diversification. In addition, it is not in general continuous

with respect to the confidence level α. Consequently VaR is sensitive to small changes

in α when it is applied to discontinuous distributions (Acerbi and Tasche 2002). On

the other hand, Dhaene et al. (2004) showed that the ES is a coherent, law invariant

(A5) and comonotonic additive (A6) risk measure. Thus, the ES can be treated as a

coherent extension of the VaR.

3.2.2 Utility Function

When a consumer or an investor exposed to uncertainty, a risk-averse investor might

choose to accept with a low but guaranteed payment, rather than choosing an invest-

ment with high expected returns but also with high risk of losing money. Let U (x)

be the utility function of a risk-averse investor, where x denotes the wealth. The
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aversion to risk implied by a utility function U (·) is to be assumed as a form of

concavity (Pratt 1964). The more the curvature of a concave function U (x), the

more the risk aversion is there. Hence, a more risk-averse investor prefers a more

conservative investment. In the following, three popular utility functions are briefly

introduced through the absolute risk-aversion, denoted by A(x) = −U ′′(x)/U ′(x),

and the relative risk-aversion, abbreviated as R(x) = −xU ′′(x)/U ′(x), (Leroy and

Werner 2001):

1. Constant Absolute Risk-Aversion (CARA): If A(x) is a positive constant which

is independent of wealth x , then we call the corresponding utility function being

CARA. For example, the negative exponential utility function defined by U (x) =
−e−νx is a CARA utility.

2. Constant Relative Risk-Aversion (CRRA): If R(x) is a positive constant R which

is independent of wealth x , then we call the corresponding utility function being

CRRA. If R = 1, then the utility function of CRRA can be written as U (x) = ln x ,

for x > 0, which is called log utility. If R �= 1, then U (x) = x1−R

1−R
, for x > 0, which

is called power utility.

3. Hyperbolic Absolute Risk-Aversion (HARA): If a utility function satisfies A(x) =
−U ′′(x)/U ′(x) = 1/(ax + b), which is a hyperbolic function of x , then it is

called HARA. In particular, the HARA encompasses the CARA and CRRA cases

since it reduces to the CARA if a = 0 and reduces to the CRRA if b = 0. In

general, if ab �= 0, the utility function of the HARA can be written as

U (x) =

⎧

⎨

⎩

log(x − xs), if a = 1,

(x − xs)
1−R∗

1 − R∗ , otherwise,

for x > xs , and U (x) = −∞, for x ≤ xs , where R∗ = 1/a and xs = −b/a.

3.2.3 Spectral Measures of Risk

A general class of coherent risk measures, called spectral risk measure (SRM), is

defined by

Mφ(X) = −
∫ 1

0

φ(p)F←
X (p)dp, (3.3)

where F←
X (p) = inf{x |FX (x) ≥ p} and φ ∈ L 1([0, 1]) is called the risk aversion

function of the risk measure Mφ(X). In addition, φ is said to be an “admissible” risk

spectrum if it is non-negative, non-increasing and
∫ 1

0
φ(p)dp = 1. SRM is a coherent

measure of risk if φ is an admissible risk spectrum (Acerbi 2002). In the realm of

spectral measures, an investor can optimize a portfolio in a more articulated way

by expressing her subjective risk aversion via the function φ (Acerbi and Simonetti

2002).
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Acerbi (2002) further mapped any rational investor’s subjective risk aversion (or

utility preference) onto a SRM. For example, if we consider the exponential utility

function defined over random outcomes x by U (x) = −e−νx , where ν > 0, then the

risk aversion function φ(·) is defined by setting φ(p) ∝ e−ν p. To satisfy the constraint
∫ 1

0
φ(p)dp = 1, we have φ(p) = νe−ν p

1−e−ν , where 0 < p < 1.

Additionally, since the ES can be expressed as

ES(X) = −
1

α

∫ α

0

F←
X (p)dp = −

∫ 1

0

φE Sα
(p)F←

X (p)dp, for 0 ≤ α ≤ 1,

where φE Sα
(p) = 1

α
I{p≤α} with I{·} being an indicator function, thus the SRM defined

in (3.3) can be expressed as a weighted average of expected shortfalls (Acerbi 2004).

3.2.4 Vine Copulae: C- and D-Vines

Traditionally, traders evaluate the performance and risk of a portfolio under the

multivariate Gaussian assumption. However, many empirical studies found that this

assumption is not adequate for financial data (Danielsson et al. 2006; Morton et al.

2006; Giamouridis and Vrontos 2007). Copulae help to release the Gaussian assump-

tion and offer a general class of joint distributions. It uses a copula function to link the

marginal distributions of individual asset returns to depict the dependence structure.

Copula has recently become increasingly popular in many fields of applications

for constructing multivariate distributions (Choros et al. 2013, 2014). It establishes

the link between the univariate margins and the multivariate distribution functions.

The main concern in practical implementation is how to identify an adequate family

of copulae. A rich variety of bivariate copula families is well-investigated in the

literature (Joe 1997; Nelsen 2006). However, the choice of adequate families for

higher dimensions is more challenging. Standard multivariate copulae such as the

multivariate Gaussian, Student-t and Archimedean copulae lack the flexibility of

accurately modeling the dependence among larger numbers of variables. In stead of

generalizing the standard multivariate copulae by increasing the complexity of their

structures, vine copulae propose to model multivariate dependency by using and

benefiting from the rich variety of bivariate copulae as building blocks (Joe 1996;

Bedford and Cooke 2001, 2002; Kurowicka and Cooke 2006).

Vine copulae are flexible graphical models for describing multivariate distribu-

tions by decomposing a multivariate density into a series of bivariate copulae, or

called pair-copulae, where each pair-copula can be chosen independently from each

others (Aas et al. 2009; Brechmann and Schepsmeier 2013). This decomposition

allows for an enormous flexibility in modeling asymmetries and tail dependence

of a large number of variables. Aas et al. (2009) proposed a method for statistical

inference of pair-copula decomposed models. Brechmann and Schepsmeier (2013)

established an R package, called CDVine, which provides functions and tools for
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statistical inference of canonical vine (C-vine) and D-vine copulae, where the C- and

D-vines are two successful and popular vine copula families in many applications

(see Brechmann and Schepsmeier 2013, and the references therein). In the follow-

ing, we employ the multivariate distribution with 4 variables as an example to briefly

illustrate the 4-dimensional C- and D-vines.

There are 12 different 4-dimensional C-vine forms and 12 different 4-dimensional

D-vine forms, and none of them are the same. The 4-dimensional C-vine structure

is generally represented as

f1234(x) = f1(x1) · f2(x2) · f3(x3) · f4(x4)·
c12{F1(x1), F2(x2)}c13{F1(x1), F3(x3)}c14{F1(x1), F4(x4)}·
c23|1{F(x2 | x1), F(x3 | x1)}c24|1{F(x2 | x1), F(x4 | x1)}·
c34|12{F(x3 | x1, x2), F(x4 | x1, x2)} (3.4)

and the 4-dimensional D-vine structure is represented as

f1234(x) = f1(x1) · f2(x2) · f3(x3) · f4(x4)·
c12{F1(x1), F2(x2)}c23{F2(x2), F3(x3)}c34{F3(x3), F4(x4)}·
c13|2{F(x1 | x2), F(x3 | x2)}c24|3{F(x2 | x3), F(x4 | x3)}·
c14|23{F(x1 | x2, x3), F(x4 | x2, x3)}, (3.5)

where x = (x1, x2, x3, x4), f1234(x) is the joint density of (X1, X2, X3, X4), fi (xi ) is

the marginal density of X i , Fi (xi ) is the distribution function of X i for i = 1, 2, 3, 4,

F(x2 | x1) is the conditional distribution function of X2 given X1, c12{F1(x1), F2(x2)}
is a pair copula density of X1 and X2, c23|1{F(x2 | x1), F(x3 | x1)} is the conditional

pair copula density of X2 and X3 given X1 and so on. The details of the deviation of

(3.4) and (3.5) are given in the Appendix.

The C- and D-vine trees help us to easily memorize the decompositions of (3.4) and

(3.5). For example, the corresponding structure of a 4-dimensional C-vine including

3 trees is shown in Fig. 3.1a. In the first tree, the dependencies of the first and second

variables, of the first and third, of the first and fourth, and so on, are modeled by

pair copulae. That is, if we assign the orders 1,…,4 to the four random variables,

then the pairs of (1, 2), (1, 3), (1, 4), . . . are modeled by bivariate copulae. In the

second tree, (2, j | 1) denotes the conditional dependence of the second and the j th

variables given the first variable, for j = 3, 4, and a bivariate copula is employed

to model each conditional distribution. In the third tree, we denote the conditional

dependence of (2, 3 | 1) and (2, 4 | 1) by (3, 4 | 1, 2) and again model the conditional

joint distribution of (3, 4 | 1, 2) by a bivariate copula. By comparing the C-vine trees

with the decomposition given in (3.4), the pairs shown in the C-vine trees are exactly

the same with the components of the pair copulae in (3.4). Similarly, Fig. 3.1b presents

the corresponding 4-dimensional D-vine trees to (3.5).
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Fig. 3.1 a A 4-dimensional C-vine tree. b A 4-dimensional D-vine tree

3.3 Methodology

Rockafellar andUryasev (2000; 2002) proposed a scheme of linearization of the opti-

mization problem (3.2) with the ES under the assumption of i.i.d. returns. In the fol-

lowing, we present their technique with the ES in our notation. First, rewrite the ES:

E Sα,t = −Et (Yt+1 | −Yt+1 > ξα,t ) = ξα,t +
1

α
Et (−Yt+1 − ξα,t )

+,

where Yt+1 =
∑p

m=1 cm,t Xm,t+1 is the portfolio return at time t + 1 and ξα,t is the

corresponding VaR of Yt+1 with respect to α level at time t + 1 conditional on Ft .

Then, the optimization problem (3.2) with the ES can be rewritten as

max
ct ,ξα,t ,z1,...,zt

Et (Yt+1) subject to ct ≥ 0,

p
∑

m=1

cm,t ≤ 1, and

⎧

⎨

⎩

ξα,t + 1
tα

∑t
i=1zi ≤ L ,

zi ≥ 0,

zi + ξα,t ≥ −Yi , for i = 1, . . . , t,

(3.6)

by incorporating zi ’s to extend the set of unknown parameters. In (3.6), the objective

function and the constraints are now linear functions of the unknown parameters

{ct , ξα,t , z1, ..., zt } and thereby a LP technique can be used to obtain ct .

However, many empirical studies show that the return processes of the underlying

assets in financial markets usually exhibit autocorrelation, negative skewness, kur-

tosis, conditional heteroscedasticity and tail dependence (Giamouridis and Vrontos

2007; Choros et al. 2013, 2014). It is of particular importance for asset managers

to incorporate these features of the financial time series data when creating an

investment or hedging portfolio. In order to model the autocorrelation and condi-

tional heteroscedasticity, we assume that the mth underlying return process Xm,t ,

m = 1, . . . , p, follows (3.1) and the joint distribution of (ε1,t , . . . , εp,t ) is modeled
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by a C- or D-vine for depicting the multidimensional dependence among the underly-

ing assets. Model (3.1) includes various financial time series models which are widely

used in the market. For example, the ARMA-GARCH and ARMA-EGARCH mod-

els are two particular cases being commonly discussed in the economic, statistical,

and financial literatures (see Bollerslev 1986; Nelson 1990; Duan 1995; Brandt and

Jones 2006; Harveya and Sucarrat 2014).

Huang and Lin (2017) extended the i.i.d. scenario of Rockafellar and Uryasev

(2000; 2002) to a more realistic situation as illustrated in (3.1) and linearize the

nonlinear optimization problem in (3.2) with SRM. In particular, if we employ the

ES, which is a special case of the SRM, as the risk measure, then the optimization

problem (3.2) can be rewritten as

max
ct ,ξ

∗
α,t ,z1,...,zt

Et (Yt+1), subject to ct ≥ 0,

p
∑

m=1

cm,t ≤ 1, and

⎧

⎨

⎩

L ≥ −
∑p

m=1cm,tµm,t + ξ∗
α,t + 1

tα

∑t
i=1 zi ,

zi ≥ 0

zi ≥ −ξ∗
α,t − κi , for i = 1, . . . , t,

(3.7)

where µm,t = Et (Xm,t+1), κi =
∑p

m=1 cm,tσm,t+1εm,i , ξ
∗
α,t is the corresponding VaR

of κt+1 with respect to α level at time t + 1 conditional on Ft . From comparing the

expressions of (3.6) and (3.7), one can find the following three major changes:

1. The 1st term on the right-hand-side of the 1st inequality in (3.7) stands for the

autocorrelated part.

2. On the right-hand-side of the 3rd inequality in (3.7) since the m-th summand of κi

includes the conditional volatility σm,t+1, thus κi reflects the effect of conditional

heteroscedasticity.

3. The role of the i.i.d. returns Xm,i in (3.6) for each fixed m is replaced by the i.i.d.

innovations εm,i contained in κi in (3.7).

3.4 Simulation Study

In this section, we conduct several simulation scenarios to investigate the accuracy

of the LP, the effects of the magnitude of tail dependence and the degrees of risk

aversion on the performance of the optimal portfolio.
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3.4.1 A 2-Dimensional Case

First, for the purpose of demonstration we concentrate on p = 2.

1. Generate observations of the mth underlying return process from the following

AR(1)-EGARCH(1, 1) model, m = 1, 2,

⎧

⎨

⎩

Xm,t = φm,0 + φm,1 Xm,t−1 + am,t ,

am,t = σm,tεm,t ,

log σ2
m,t = km + Gm log σ2

m,t−1 + Am[|εm,t−1| − E(|εm,t−1|)] + Lmεm,t−1,

(3.8)

where (ε1,t , ε2,t ) are i.i.d. samples from a bivariate t distribution with zero means,

unit variances, correlation ρ, and ν1 = ν2 = ν. In particular,

E(|εm,t−1|) =
2
√

ν − 2Ŵ[(ν + 1)/2]
(ν − 1)Ŵ(ν/2)

√
π

.

2. Solve the optimization problem defined in (3.1) and (3.2) for ES and SRM cases,

where α = 0.05 for the ES and the generating function φ(·) for the SRM is set to

be φ(p) = 10e−10p/(1 − e−10) for 0 ≤ p ≤ 1.

The expected returns (on the upper panel) and the values of risks (on the lower panel)

of portfolios with different holding weights, c1, of the 1st underlying asset under the

model (3.8) are presented in Figs. 3.2 and 3.3 with ES and SRM, respectively.

The parameters in (3.8) are set to be ρ = 0.5, ν = 10, φ1,0 = 0.01, φ2,0 = 0.0105,

φ1,1 = 0.02, φ2,1 = 0.0199, k1 = k2 = −0.3, A1 = A2 = 0.1776, G1 = G2 = 0.95

and L1 = L2 = −0.05, and the upper bound L of the ES (or SRM) is set up to be

the value of the ES (or SRM) of the portfolio with c1 = c2 = 0.5. Figure 3.2 plots

the results of the ES case and Fig. 3.3 presents the results of the SRM with T = 250

on the left panel and T = 500 on the right panel. The red dashed lines in the lower

panel denote the predetermined upper bound of the risk. If the value of the risk of

a specified c1 is below the red dashed line, then we plot the corresponding point in

green, otherwise we mark the point in blue. The red circles on the upper panel denote

the optimal solution calculated from the LP, which are close to the optimal selection

of c1 shown in Figs. 3.2 and 3.3, especially we increase the number of observations

T to 500. This phenomenon confirms the accuracy of the proposed method in this

2-dimensional case.

3.4.2 The Impacts of Tail-Dependence

In this section, we investigate the impacts of tail-dependence under bear or bull

markets. Consider the case of 10 assets, where assets 1–5 are independent and assets

6–10 have nonlinear tail dependency. We employ a 5-dimensional D-vine to model
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Fig. 3.2 The expected returns and the values of the ES of portfolios with different holding weights

c1 of the 1st underlying asset under model (3.8), where the numbers of observations are a T = 250

and b T = 500. XFGexp_rtn_ES_2d

(a)

Fig. 3.3 The expected returns and the values of the SRM of portfolios with different holding

weights c1 of the 1st underlying asset under model (3.8), where the numbers of observations are a

T = 250 and b T = 500. XFGexp_rtn_SRM_2d

the joint distribution of the dependent assets 6–10. In particular, we employ bivariate

Clayton and Gumbel copulae to describe the nonlinear tail dependency between

assets 6–10 in the first tree of the D-vine for bear and bull markets, respectively, where

the copula parameters are randomly chosen from a U (3,5) random variable. By using

the same settings as in Sect. 3.4.1, except for setting φi,0 = 0.1, for i = 1, . . . , 5,

and (φi,0,φi,1, ki ) = (0.11, 0.02,−0.28), for i = 6, . . . , 10, to enlarge the expected

returns of the assets in the bull market case, the optimal allocations are solved by the

proposed LP method with ES under the bear and bull markets, separately.

We compute the sums of the weights of the assets 6–10 under bear and bull markets

separately. The average of the holding proportions of assets 6–10 in the optimal

portfolio based on 100 random replications is around 37% for the bear market and

is around 90% for the bull market. These values reveal interesting and reasonable

phenomenon. In a bear market, since the lower tail dependence of the assets 6–10

https://github.com/QuantLet/XFG3/tree/master/XFGexp_rtn_ES_2d
https://github.com/QuantLet/XFG3/tree/master/XFGexp_rtn_SRM_2d
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are modeled by a D-vine with Clayton copulae, the prices of the assets 6–10 tend

to decrease simultaneously. In practice, diversification strategies are employed by

investors in tough economic times. Hence, the independent assets 1–5 are more

attractive to investors than the lower tail-dependent assets 6–10 in bear markets. On

the contrary, the upper tail dependent assets have higher chance to be selected in the

optimal portfolio than the independent assets in bull markets since the assets with

upper tail dependencies tend to increase simultaneously.

3.4.3 The Impact of the Degrees of Risk Aversion

In this section, we investigate the performance of the optimal portfolios with different

degrees of risk aversion, where each asset return process is assumed to follow an

AR(1)-EGARCH(1,1) process. Consider that an investor plans to construct a portfolio

by solving (3.2) with 30 assets subject to his personal risk attitude with a HARA

utility function U (x) = log(x + b), where b ∈ (−1, 0). Let ε be a positive constant

satisfying max(0, b) < ε < 1 + b and set the generating function φ(p) of the SRM

to be

φ(p) =

⎧

⎪

⎨

⎪

⎩

− log ε

η
, 0 ≤ p < ε − b,

− log(p + b)

η
, ε − b ≤ p ≤ 1,

(3.9)

whereη = b log ε − (1 + b) log(1 + b) + (1 + b) − ε > 0 and b reflects the degrees

of risk aversion of an investor.

Figure 3.4a presents boxplots of the optimal expected returns obtained by solv-

ing (3.2) with a generating function of the SRM defined in (3.9), where b =
−0.2,−0.3,−0.5, ε = 10−4 and the number of replications is 100. Figure 3.4b

presents the corresponding utility functions, where other parameters in model (3.8)

are set to be the same as in Sect. 3.4.1. In Fig. 3.4b, the solid lines are the tangents

at x = 0.7 for the 3 utility functions. Since the slope of the tangent line in the case

of b = −0.5 is larger than the others, thus investors having the utility function with

b = −0.5 are more aggressive than those with b = −0.2 and −0.3. Figure 3.4a indi-

cates that less risk-averse or more aggressive investors have larger expected returns

than conservative investors.

3.5 Empirical Studies

We carry out our empirical investigation by using underlying assets stock price data

included in the FTSE TWSE Taiwan 100 Index. We selected 79 stocks from 100

underlying assets included in the Taiwan 100 Index, where the daily returns from 1,
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(a)

Fig. 3.4 a Boxplots of the optimal expected returns obtained by solving (3.2) with a generating

function of the SRM defined in (3.9), where b = −0.2, –0.3 and –0.5. b The corresponding utility

functions for b = −0.2, −0.3 and −0.5. XFGexp_rtn_SRM

December 2004 through 3, July 2014 (2365 observations) are used for investigation.

This period includes a number of financial crises, for example, the subprime lending,

stagflation, the Lehman crisis, the Greek government-debt crisis as well as the U.S.

monetary policy-QE2. These events caused financial markets to have large volatility

variation. In the following, we divide the time period into three sub-periods for the

investigation: December 2004 to November 2007 (denoted by P1), representing rela-

tively favorable market conditions (737 observations), December 2007 to December

2010 (denoted by P2), representing more extreme market conditions (764 observa-

tions) and January 2011 to 3, July 2014 (denoted by P3), representing improved

market conditions (864 observations). We construct a self-financing trading strategy

by using the proposed LP method to daily rebalance the portfolio with the 79 stocks

for each of the three sub-periods. In particular, the FTSE TWSE Taiwan 100 Index

is used as our benchmark for comparison. In the following, we use P1 as an example

to illustrate the details of the investigation:

1. Let Pm,t and FT SEt be the price of the mth asset and FTSE TWSE Taiwan 100

Index at time t , where t = 0 stands for the date of 1, December 2004.

2. Let Vt denote the value of our portfolio at time t and V250 be the same with the

value of FTSE TWSE Taiwan 100 Index on 5, December 2005. That is,

V250 = FT SE250 = b(250)

p
∑

m=1

cm,250 Pm,250 + Cash250,

where Cash250 = FT SE250(1 −
∑p

m=1 cm,250) is the amount invested in the

bank, b(250) = FT SE250

∑p

m=1 cm,250/
∑p

m=1 cm,250 Pm,250 is a scalar such that

V250 = FT SE250, cm,250 are obtained by solving (3.2) with ES of level α = 0.05

by the proposed LP method, and each underlying return process is modeled by

an AR(1)-EGARCH(1,1) based on Xm,t = ln Pm,t − ln Pm,t−1 for t = 1, . . . , 250

and m = 1, . . . , 79.

https://github.com/QuantLet/XFG3/blob/master/XFGexp_rtn_SRM
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3. At time t = 251, the value of our portfolio is V251− = b(250)
∑p

m=1 cm,250 Pm,251 +
erday Cash250 prior to adjusting the allocations, where rday is the daily riskfree

interest rate and is set up as 0.01/250 in our investigation. By using the data

Pm,t , t = 1, . . . , 251, we reestimate the dynamic models of each return process

and compute the updated optimal allocations, which are proportional to cm,251

obtained from solving (3.2) by LP, where the value of the updated portfolio,

denoted by V251+ , is the same as V251− . That is,

V251+ = b(251)

p
∑

m=1

cm,251 Pm,251 + Cash251, (3.10)

where b(251) = V251−
∑p

m=1 cm,251/
∑p

m=1 cm,251 Pm,251 is a scalar such that

V251− = V251+ for satisfying self-financing, and Cash251=V251−(1−
∑p

m=1 cm,251)

is the amount invested in the bank after the reallocation.

4. Repeat Step 3 until the end of P1.

Figure 3.5a–c plot the values of our trading strategy and the FTSE TWSE Taiwan

100 Index for P1, P2 and P3, respectively, where the black line is the values of the

Taiwan 100 Index and the upper bound L of the risk is set to be 0.02, 0.03 or 0.05.

In Fig. 3.5a–c, the values of the self-financing portfolio with L = 0.05 (green line)

fluctuate more than those of L = 0.02 (red lines) and 0.03 (blue lines) no matter

which economic situation is since a more aggressive trading strategy (with larger L)

could gain more profits by taking more risks. In particular, the optimal portfolio tends

to be more aggressive (with larger L) in bull markets and be more conservative (with

smaller L) in bear markets. For example, during the financial crisis from December

2007 to June 2009 in Fig. 3.5b, the optimal portfolios with smaller L perform better

than those with larger L .

In practice, investors would not use a fixed L for selecting their optimal portfolio,

but rely on constructing the efficient frontier with various L instead. The discussion

of how to construct the optimal portfolio through the efficient frontier framework

is beyond the scope of this chapter. The objective of this chapter is to demonstrate

that the proposed LP is useful to obtain the optimal allocations under conditional

heteroscedastic models with more general risk measures than standard deviation. The

(a)

Fig. 3.5 The values of the self-financing trading strategy and the FTSE TWSE Taiwan 100 Index for

a P1 b P2 c P3 with different fixed upper bounds of risk. XFGTWSE100_strategy_fixedESlevel

https://github.com/QuantLet/XFG3/tree/master/XFGTWSE100_strategy_fixedESlevel
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empirical study is designed to investigate whether the optimal portfolio would react

to different economic situations if we consider a more complex but more realistic

model. Please note though that we did not consider transaction costs in the daily

reallocation and also allow to hold fractional numbers of shares of assets. What we

have done is to provide an accurate and fast computational method for the investors

who use model (3.1) to depict the dynamics of the underlying assets and obtain their

optimal allocations of the assets by solving (3.2).

3.6 Concluding Remarks

In this chapter, we considered a portfolio optimization problem with the SRM, where

the dynamics of the underlying return processes are depicted by autoregressive and

conditional heteroscedastic models. The tail-dependence of the underlying assets

is modeled by a CD-vine copula. A linearization of the optimal portfolio selection

problem is used to compute the optimal asset allocations accurately and quickly. Sim-

ulation studies are conducted to investigate several interesting economic phenomena.

First, we demonstrate the accuracy of the LP method for solving the optimal portfo-

lio problem by using the case of two underlying assets. Second, we reveal that the

optimal portfolio tends to diversify the investing risk by selecting the independent

assets in bear market. Third, the less risk-averse investors achieve larger expected

returns than conservative investors. The empirical study indicates that the optimal

portfolio tends to be aggressive in bull markets and be conservative in bear markets.

Appendix

Derivation of (3.4) and (3.5)

To show the 4-dimensional C-vine, first note that

f1234(x) = f1(x1) f (x2 | x1) f (x3 | x1, x2) f (x4 | x1, x2, x3), (3.11)

where x = (x1, x2, x3, x4), f1234(x) is the joint density of (X1, X2, X3, X4), fi (xi )

is the marginal density of X i for i = 1, 2, 3, 4, f (x2 | x1) is the conditional density

of X2 given X1 and so on. In addition, we have the following identities

f (x2 | x1) = c12{F1(x1), F2(x2)} f2(x2),

f (x3 | x1, x2) =
f (x2, x3 | x1)

f (x2 | x1)

= c23|1{F(x2 | x1), F(x3 | x1)} f (x3 | x1)

= c23|1{F(x2 | x1), F(x3 | x1)}c13{F1(x1), F3(x3)} f3(x3),



54 S.F. Huang et al.

and

f (x4 | x1, x2, x3) =
f (x3, x4 | x1, x2)

f (x3 | x1, x2)

= c34|12{F(x3 | x1, x2), F(x4 | x1, x2)} f (x4 | x1, x2)

= c34|12{F(x3 | x1, x2), F(x4 | x1, x2)}
f (x2, x4 | x1)

f (x2 | x1)

= c34|12{F(x3 | x1, x2), F(x4 | x1, x2)}c24|1{F(x2 | x1), F(x4 | x1)} f (x4 | x1)

= c34|12{F(x3 | x1, x2), F(x4 | x1, x2)}c24|1{F(x2 | x1), F(x4 | x1)}
c14{F1(x1), F4(x4)} f4(x4).

By substituting the above identities into (3.11), we have

f1234(x) = f1(x1) f2(x2) f3(x3) f4(x4)

c12{F1(x1), F2(x2)}c13{F1(x1), F3(x3)}c14{F1(x1), F4(x4)}
c23|1{F(x2 | x1), F(x3 | x1)}c24|1{F(x2 | x1), F(x4 | x1)}
c34|12{F(x3 | x1, x2), F(x4 | x1, x2)}.

Therefore, (3.4) holds.

On the other hand, the 4-dimensional D-vine is obtained through the following

representation:

f1234(x) = f2(x2) f (x3 | x2) f (x1 | x2, x3) f (x4 | x1, x2, x3). (3.12)

By using a similar argument to the derivation of the C-vine, we have the following

identities:

f (x3 | x2) = c23{F2(x2), F3(x3)} f (x3),

f (x1 | x2, x3) = c13|2{F(x1 | x2), F(x3 | x2)} f (x1 | x2)c12{F1(x1), F2(x2)} f1(x1),

f (x4 | x1, x2, x3) = c14|23{F(x1 | x2, x3), F(x4 | x2, x3)}c24|3{F(x2 | x3), F(x4 | x3)},
c34{F3(x3), F4(x4)} f4(x4).

Therefore, (3.12) can be rewritten as

f1234(x) = f1(x1) f2(x2) f3(x3) f4(x4)

c12{F1(x1), F2(x2)}c23{F2(x2), F3(x3)}c34{F3(x3), F4(x4)}
c13|2{F(x1 | x2), F(x3 | x2)}c24|3{F(x2 | x3), F(x4 | x3)}
c14|23{F(x1 | x2, x3), F(x4 | x2, x3)}

and (3.5) holds.
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Chapter 4

Implementation of Local Stochastic
Volatility Model in FX Derivatives

J. Zheng and X. Yuan

Abstract In this paper, we present our implementations of the Local Stochastic

Volatility (LSV) Model in pricing exotic options in FX Market. Firstly, we briefly

discuss the limitations of the Black-Scholes model, the Local Volatility (LV) Model

and the Stochastic Volatility (SV) Model. To overcome the drawbacks of the above

three models, a more generalized LSV model has been proposed to describe the

dynamics of implied volatilities. Secondly, we present the details of LSV Model

calibration in terms of the Forward Kolgomorov equation. Thirdly, we introduce the

numerical methods of option pricing using the LSV model, including both the Back-

ward Partial Differential Equation (PDE) method and Forward Monte Carlo method.

Finally, based on our implementations, we compare the calibration and pricing results

of the LSV model with the LV model and the SV model, lower calibration errors and

relatively accurate pricing results are achieved, which demonstrates the effectiveness

of the methods presented in the paper.

4.1 Introduction

Traditional Black-Scholes model (Black and Scholes 1973) is broadly used in Euro-

pean vanilla option pricing for both FX and equity markets. In the Black-Scholes

model for FX market, the FX spot rate St is assumed to follow the Stochastic Dif-

ferential Equation (SDE) as below

d St =
(

rd − r f

)

St dt + σ St dWt (4.1)
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where rd and r f denote the domestic interest rate and the foreign interest rate respec-

tively, and volatility σ is assumed to be constant.

However, in real market (e.g. the FX market), the volatility is not constant across

different strikes and maturity dates, which is quite important for pricing barrier

options. To tackle the problem of volatility smile and to describe the dynamics of

implied volatilities, several models have been developed to generalize Black-Scholes

model.

The Local Volatility (LV) model was firstly proposed by Dupire (1994). In the LV

model, the diffusion coefficient is a deterministic function of time and the FX spot

rate, σLV (St , t), the corresponding SDE is as below

d St =
(

rd − r f

)

St dt + σLV (St , t) St dWt (4.2)

Theoretically, the LV model is able to provide a perfect fit to the quoted market

implied volatilities. However, it still has several drawbacks. Firstly, it has been pointed

out that the delta of an option computed from the LV model is far away from precise,

because of an improper implied volatility dynamics (Hagan et al. 2002). Secondly,

the forward implied volatility smile generated by the LV model is almost flat (Fengler

2005), but the smile persists over time in the reality. Thirdly, the LV model generates

the volatility smile using a deterministic function σLV (St , t), which depends on the

spot level St . Therefore, the LV model is sticky-strike, which seldom happened in

the FX market (Clark 2011).

Based on an empirical observation of FX market, it is more reasonable to model the

instaneous volatility via a stochastic process, which leads to the Stochastic Volatility

(SV) model. In a SV model, the diffusion coefficient is a function of a stochastic

process vt , a (vt ), the corresponding SDE is as following

d St =
(

rd − r f

)

St dt + a (vt ) St dWt (4.3a)

dvt = b (vt ) dt + c (vt ) d Z t (4.3b)

dWt d Z t = ρdt

where ρ represents the correlation between the Brownian motions Wt and Z t . In

most cases, the stochastic variance vt is assumed to be mean-reverting, continuous,

and positive. For example, in the well-known Heston model (Heston 1993), the

Cox-Ingersoll-Ross (CIR) process is used to model the variance process vt :

d St =
(

rd − r f

)

St dt +
√

vt St dWt (4.4a)

dvt = κ (m − vt ) dt + α
√

vt d Z t (4.4b)

dWt d Z t = ρdt

where κ is the mean-reverting speed, m is the mean-reverting level, and α corre-

sponds to the volatility of variance. Compared with the LV model, the SV model

is able to imply a more realistic forward implied volatility smile. However, it still

has several drawbacks. Firstly, the SV model is not able to fit the implied volatility
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surface perfectly as the LV does. Secondly, the SV model generates the same smile

irrespective of initial level of the spot, and is therefore “sticky-delta”, which is not

the reality in FX market either (Clark 2011).

To overcome the drawbacks of the LV model and the SV model, a more generalized

model, named Local Stochastic Volatility (LSV) model was introduced. In the LSV

model, the diffusion coefficient is the multiplication of a deterministic local volatility

component σL SV (St , t) and a stochastic volatility component vt . For example, the

SDE for a Heston-type LSV model is as below.

d St =
(

rd − r f

)

St dt + σL SV (St , t)
√

vt St dWt (4.5a)

dvt = κ (m − vt ) dt + α
√

vt d Z t (4.5b)

dWt d Z t = ρdt

In the LSV model, part of the volatility smile is generated by the deterministic

local volatility term σL SV (St , t), while the rest part of the smile is generated by the

stochastic volatility term vt . Therefore, the LSV model is the model between“sticky-

delta” and “sticky-strike”, which is actually useful in the FX market. Moreover, it

fits the implied volatility surface quite well as the LV model does, and meanwhile

implies a more realistic forward implied volatility smile assumed by the SV model.

The rest of this paper is organized as following. In Sect. 4.2, we detail the LSV

model calibration process through solving a Fokker–Planck Equation (FPE) itera-

tively. In Sect. 4.3, two different numerical methods for pricing exotic options using

the LSV model are introduced, Backward PDE, and Forward Monte Carlo. Numeri-

cal results for model calibration and barrier option pricing are presented in Sect. 4.4,

followed by the conclusion remarks and future works in Sect. 4.5.

4.2 Model Calibration

As mentioned in Sect. 4.1, by choosing different stochastic processes for vt , we

can get different types of the LSV model. For simplicity, we limit our discussions

to Heston-type LSV model. The calibration of other types of LSV model can be

performed similarly.

Generally speaking, the calibration of the LSV model consists of two main steps.

In step 1, the parameters of the SV part are calibrated to fit a certain proportion of

volatility smile. The proportion is controlled by a mixing fraction parameter, which

is between 0 and 1. In step 2, the parameters of LV part are added to calibrate the

LSV model to the whole volatility smile.

Step 1: Calibrate the parameters for the SV part, this step is performed infrequently.

Specify a mixing weight η, which controls the proportion of volatility smile generated

by the SV part and the proportion generated by the LV part. The mixing weight is used

to mark down the implied volatility smile and skew, which can be done in two ways.

One way is to multiply the market quotes of Butterfly and Risk Reversal by the factor
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η. The Butterfly quotes correspond to the volatility smile, while the Risk Reversal

quotes correspond to the volatility skew. Since the multiplication will reduce the

volatility smile and skew, we calibrate a purely SV model to the market quotes with

a reduced smile and skew. The other way is to calibrate a purely SV model to the true

market quotes firstly, and then multiply the volatility of variance α and correlation

ρ by the factor η, because the volatility of variance parameter corresponds to the

volatility smile, and the correlation parameter corresponds to the volatility skew.

Step 2: Calibrate the leverage function σL SV (St , t) so that the LSV model can fit

the market quotes of vanilla options. This step is usually performed more frequently

than step 1. We will detail the implementations of this step in the later part of

this Section.

In our experiments, we set the mixing fraction empirically as described in Clark

(2011). However, please note that the mixing fraction can also be calibrated using

the quoted prices of liquid barrier options, as described in Tian (1993).

The calculation of the leverage function σL SV (St , t) is based on the following

important result: there exists only one LSV surface σL SV (St , t) so that the LSV

model can mimic the LV model, and σL SV (St , t) must follow

σLV (s, t)2 = E
[

σL SV (s, t)2 vt | St = s
]

= σL SV (s, t)2 E [vt | St = s] (4.6)

For the proof the above important result, please refer to Ren et al. (2007), Tachet

(2011). Based on the result, we can compute σL SV (St , t) as the ratio between local

volatility and conditional expectation of stochastic volatility:

σL SV (s, t) =
σLV (s, t)

√
E [vt | St = s]

= σLV (s, t)

√

∫

v
p (s, v, t) dv

∫

v
v · p (s, v, t) dv

(4.7)

where σLV (St , t) can be acquired from the LV model. Therefore, the key of cal-

culating σL SV (St , t) is to compute the joint probability distribution p (s, v, t).

Ren, Madan, and Qian (2007) firstly proposed to calculate p (s, v, t) by solving

the Fokker–Planck Equation (FPE) of the LSV model through a Finite Difference

Method. After their pioneering work, Tachet (2011), Tian (1993), and Clark (2011)

also solved the FPE with the Finite Difference Method, while Engelmann (2012)

used the finite volume method, and Cozzi (2012) used the finite element method.

Let X t = ln (St ), the FPE for Heston-type LSV is as following

∂p

∂t
=

1

2

∂2
[

vσ 2
L SV (X, t) p

]

∂ X2
+ ρα

∂2 [vσL SV (X, t) p]

∂ X∂v
+

1

2
α2 ∂2 [vp]

∂v2

+
∂

∂ X

[(

1

2
vσ 2

L SV (X, t) −
(

rd − r f

)

)

p

]

+ κ
∂ [(v − m) p]

∂v
(4.8)

where, for simplicity, σL SV (St , t) = σL SV (X t , t) refers to the leverage function of

LSV model either in logspot or spot coordinates.

To solve the FPE (4.8), an Alternating-Direction-Implicit (ADI) method is used.

Tataru and Fisher (2010) suggest to use a modified Douglas scheme, which was used
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by Hout and Foulson (2010) to solve the Backward pricing PDE for Heston model.

The modified Douglas scheme is as below.

Y0 = pn−1 + �t
[

F0 (pn−1, tn−1) + F1 (pn−1, tn−1) + F2 (pn−1, tn−1)
]

Y1 − θ�t F1 (Y1, tn) = Y0 − θ�t F1 (pn−1, tn−1) (4.9)

Y2 − θ�t F2 (Y2, tn) = Y1 − θ�t F2 (pn−1, tn−1)

pn = Y2

where pn denotes the transition probability p (s, v, tn) at time tn . The parameter θ

affects the stability and accuracy of the ADI method, which lies in the range [0, 1]. F0,

F1, and F2 refer to derivative terms in mixed derivative, v-direction, and X-direction

respectively.

F0 (p, t) = ρα
∂2 [vσL SV (X, t) p]

∂ X∂v

F1 (p, t) =
1

2
α2 ∂2 [vp]

∂v2
+ κ

∂ [(v − m) p]

∂v
(4.10)

F2 (p, t) =
1

2

∂2
[

vσ 2
L SV (X, t) p

]

∂ X2
+

∂

∂ X

[(

1

2
vσ 2

L SV (X, t) −
(

rd − r f

)

)

p

]

The initial value for the FPE is p0 = p (X, v, 0) = δ (X − X0) δ (v − v0), where

the δ() is the Dirac Delta function. According to Eq. (4.7), the leverage function at

time zero is σL SV (X0, 0) = σLV (X0,0)√
v0

. At time tn , we have pn and σL SV (X, tn), then

we can solve FPE (4.8) forward one step to get pn+1, and then use Eq. (4.7) to get

the leverage function σL SV (X, tn+1) at time tn+1. This process is repeated through

time, and we can solve pn and σL SV (X, tn) for all time points:

The solved σL SV (X, t) can be used to price derivative products, either by a back-

ward PDE or a forward Monte Carlo approach. We will detail the two pricing methods

for the LSV model in the next section (Fig. 4.1).

0 0 0( ) ( )p X X v v

0
0

0

( ,0)
( ,0) LV

LSV

X
X

v

1 1( , , )p p X v t

1( , )
LSV

X t

2 2( , , )p p X v t

2( , )LSV X t

Time 0 Time t1 Time t2

Fig. 4.1 Solve the FPE Iteratively to get the Leverage Function σL SV (X, t)
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4.3 Pricing (Backward PDE and Forward Monte Carlo)

Let V (X, v, t) denotes the option value as a function of time to expiry t , log-Spot

level X , and the instaneous variance v. The backward pricing PDE for Heston-type

LSV model are as following.

∂V

∂t
=

1

2
vσ 2

L SV (X, t)
∂2V

∂ X2
+

1

2
α2v

∂2V

∂v2
+ ραvσL SV (X, t)

∂2V

∂ X∂v

+
(

rd − r f −
1

2
vσ 2

L SV (X, t)

)

∂V

∂ X
+ κ (m − v)

∂V

∂v
− rd V (4.11)

Note that t = 0 corresponds to the option expiry, and t = T corresponds to today.

This is different from the FPE in Sect. 4.2, where we use t = 0 for today, and t = T

for option expiry.

We can also solve the backward pricing PDE using the modified Douglas scheme

as shown in Eq. (4.9). Instead, the mixed derivative operator F0, v-direction derivative

operator F1, and X -direction derivative operator F2 for the pricing PDE are as follow.

F0 (V, t) = ραvσL SV (X, t)
∂2V

∂ X∂v

F1 (V, t) =
1

2
α2v

∂2V

∂v2
+ κ (m − v)

∂V

∂v
−

1

2
rd V (4.12)

F2 (V, t) =
1

2
vσ 2

L SV (X, t)
∂2V

∂ X2
+

(

rd − r f −
1

2
vσ 2

L SV (X, t)

)

∂V

∂ X
−

1

2
rd V

In the backward pricing PDE, we start from the terminal condition, i.e., the pay-

off at expiry (t = 0). Based on the pricing PDE and some boundary conditions,

we can propagate V (X, v, t) backward to today (t = T ), where we get the option

value V (XT , vT , T ) by interpolation. The terminal condition and other boundary

conditions are all determined by the option characteristics.
Besides the backward pricing PDE method, Monte Carlo method (Glasserman

2003) can also be utilized to price the options based on the LSV model. One key
problem of Monte Carlo method for the LSV model is the discretization scheme of
the SDE (4.5) for LSV model. A tradeoff between the computation complexity and
accuracy should be found in the discretization scheme. Let X t = ln (St ), Eq. (4.5)
can be rewritten as follow.

d X t =
[

rd − r f −
1

2
Vtσ

2
L SV (X t , t)

]

dt + σL SV (St , t)
√

Vt

(

ρdWv (t) +
√

1 − ρ2dWx (t)
)

(4.13a)

dVt = κ (m − Vt ) dt + α
√

Vt dWv (t) (4.13b)

where dWx (t) and dWv(t) denote independent Brownian motions. When Feller

condition 2κm ≥ α2 is not satisfied, the variance process can become negative
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with non-zero probability in the Euler discretization. Therefore, we adopt the QE

(Quadratic Exponential) (Andersen 2008) scheme for the discretization of the vari-

ance process. For the discretization of the log-spot process, we adopt the local-

freezing of σL SV (X,t), introduced by Van etc. (2014). More specifically, the discretiza-

tion scheme for log-spot process is as follow.

xi+1 = xi + r� −
1

2
σ 2

L SV (xi , ti ) vi� +
ρ

α
σ 2

L SV (xi , ti ) (vi+1 − κm� + vi c1)

+ Zx ·
√

1 − ρ2 ·
√

σ 2
L SV (xi , ti ) vi� (4.14)

where Zx ∼ N (0, 1), c1 = κ� − 1.

4.4 Empirical Results

For the implementations of LSV model, one strives to solve the FPE accurately with

low calibration errors w.r.t the market prices of vanilla options. In our empirical

results, the low calibration errors for LSV model are achieved, which demonstrate

the effectiveness of the methods presented in this paper. Moreover, we also compare

the pricing results of reverse knock-out barrier options using the LV, the SV, and the

LSV respectively. Among the three models, the price derived from the LSV model

is the closest one to the market prices.

As a representative example, we calibrate the LV model (Dupire model), the

SV model (Heston model), and the LSV model (as described above, its SV part is

Heston-type) from market data in June 22, 2016 (data source: Bloomberg Terminal).

Both the calibrated model parameters and calibration errors for the three models are

discussed as following.

The implied volatility market data is shown in Table 4.1, while in Table 4.2 we

present the calibrated implied volatilities of LV model with corresponding errors in

the bracket. One can see that the calibration errors are very small, suggesting that the

LV model is able to provide a perfect fit to the quoted market implied volatilities, as

stated in Sect. 4.1. Theoretically the errors can be zero, however in practice there are

usually some small errors remained when numerical methods are used. The model

parameter, i.e. leverage surface σLV (St , t) in the LV model is shown in Fig. 4.2.

The calibrated implied volatilities of the Heston model, with corresponding errors

in the bracket, is shown in Table 4.3. Comparing Tables 4.2 and 4.3, we can find

that the calibration errors for the Heston model are larger than LV model, which

demonstrates that the Heston model is not able to fit the implied volatility surface

perfectly as the LV does, as stated in Sect. 4.1. The corresponding model parameters

for Heston model is shown in Table 4.4.

In Table 4.5, we present the calibrated implied volatilities of the LSV model with

corresponding errors in the bracket. Comparing Tables 4.2, 4.3 and 4.5, one can find

that the LSV model and the LV model can achieve much lower calibration errors than
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Table 4.1 EUR/USD market implied volatility (in%)

Maturity 10-Delta put 25-Delta put ATM 25-Delta call 10-Delta call

1W 22.554 19.756 17.333 15.944 15.531

2W 17.814 15.585 13.505 12.42 12.111

3W 16.466 14.176 12.217 11.304 11.334

1M 15.135 13.334 11.555 10.676 10.375

6W 14.463 12.744 11.049 10.231 10.023

2M 13.304 11.725 10.175 9.465 9.416

3M 12.894 11.298 9.855 9.302 9.416

4M 12.897 11.272 9.841 9.315 9.475

5M 12.901 11.243 9.825 9.33 9.542

6M 12.905 11.215 9.81 9.345 9.61

9M 12.79 11.088 9.733 9.32 9.662

1Y 12.666 10.951 9.65 9.294 9.719

18M 12.58 10.971 9.793 9.519 9.94

2Y 12.478 10.99 9.885 9.67 10.083

Table 4.2 Calibrated implied volatility of the LV model for EUR/USD (in%)

Maturity 10-Delta put 25-Delta put ATM 25-Delta call 10-Delta call

1W 22.534[−0.020] 19.799[0.043] 17.255[−0.078] 15.919[−0.025] 15.525[−0.006]

2W 18.259[0.445] 16.007[0.422] 13.813[0.308] 12.726[0.306] 12.413[0.302]

3W 16.765[0.299] 14.481[0.305] 12.427[0.210] 11.513[0.209] 11.513[0.179]

1M 15.406[0.271] 13.579[0.245] 11.666[0.111] 10.799[0.123] 10.533[0.158]

6W 14.303[−0.160] 12.630[−0.114] 10.889[−0.160] 10.081[−0.150] 9.884[−0.139]

2M 13.550[0.246] 11.963[0.238] 10.355[0.180] 9.636[0.171] 9.575[0.159]

3M 12.960[0.066] 11.371[0.073] 9.866[0.011] 9.320[0.018] 9.434[0.018]

4M 12.867[−0.030] 11.288[0.016] 9.818[−0.023] 9.326[0.011] 9.475[0.000]

5M 12.915[0.014] 11.286[0.043] 9.858[0.033] 9.379[0.049] 9.585[0.043]

6M 12.944[0.039] 11.256[0.041] 9.799[−0.011] 9.347[0.002] 9.623[0.013]

9M 12.572[−0.218] 10.926[−0.162] 9.593[−0.140] 9.216[−0.104] 9.545[−0.117]

1Y 12.687[0.021] 10.975[0.024] 9.641[−0.009] 9.296[0.002] 9.723[0.004]

18M 12.736[0.156] 11.120[0.149] 9.883[0.090] 9.615[0.096] 10.042[0.102]

2Y 12.491[0.013] 11.003[0.013] 9.870[−0.015] 9.665[−0.005] 10.085[0.002]
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Fig. 4.2 Leverage surface in LV Model for EUR/USD

Table 4.3 Calibrated implied volatility of the heston model for EUR/USD (in%)

Maturity 10-Delta put 25-Delta put ATM 25-Delta call 10-Delta call

1W 14.797[−7.757] 13.681[−6.075] 12.772[−4.561] 12.223[−3.721] 12.003[−3.528]

2W 14.819[−2.995] 13.558[−2.027] 12.515[−0.990] 11.926[−0.494] 11.752[−0.359]

3W 14.906[−1.560] 13.455[−0.721] 12.270[0.053] 11.648[0.344] 11.544[0.210]

1M 14.874[−0.261] 13.332[−0.002] 12.008[0.453] 11.369[0.693] 11.341[0.966]

6W 14.904[0.441] 13.146[0.402] 11.628[0.579] 10.989[0.758] 11.095[1.072]

2M 14.711[1.407] 12.797[1.072] 11.172[0.997] 10.566[1.101] 10.792[1.376]

3M 14.538[1.644] 12.384[1.086] 10.611[0.756] 10.063[0.761] 10.488[1.072]

4M 14.416[1.519] 12.107[0.835] 10.241[0.400] 9.742[0.427] 10.291[0.816]

5M 14.247[1.346] 11.828[0.585] 9.908[0.083] 9.455[0.125] 10.101[0.559]

6M 14.104[1.199] 11.629[0.414] 9.692[−0.118] 9.269[−0.076] 9.970[0.360]

9M 13.666[0.876] 11.171[0.083] 9.266[−0.467] 8.885[−0.435] 9.641[−0.021]

1Y 13.316[0.650] 10.878[−0.073] 9.036[−0.614] 8.664[−0.630] 9.418[−0.301]

18M 12.853[0.273] 10.565[−0.406] 8.831[−0.962] 8.460[−1.059] 9.167[−0.773]

2Y 12.535[0.057] 10.399[−0.591] 8.763[−1.122] 8.378[−1.292] 9.017[−1.066]
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Table 4.4 Heston model parameters for EUR/USD

Initial variance 0.017

Mean-reverting speed κ 2.486

Mean-reverting level m 0.00953

Vol of variance α 0.57

Correlation ρ −0.4

Table 4.5 Calibrated implied volatility of LSV model for EUR/USD (in%)

Maturity 10-Delta put 25-Delta put ATM 25-Delta call 10-Delta call

1W 22.097[−0.457] 19.482[−0.274] 16.998[−0.335] 15.711[−0.233] 15.338[−0.193]

2W 17.868[0.054] 15.653[0.068] 13.520[0.015] 12.481[0.061] 12.203[0.092]

3W 16.502[0.036] 14.248[0.072] 12.240[0.023] 11.357[0.053] 11.384[0.050]

1M 15.233[0.098] 13.434[0.100] 11.555[0.000] 10.719[0.043] 10.463[0.088]

6W 14.215[−0.248] 12.554[−0.190] 10.833[−0.216] 10.056[−0.175] 9.888[−0.135]

2M 13.419[0.115] 11.853[0.128] 10.270[0.095] 9.575[0.110] 9.531[0.115]

3M 12.997[0.103] 11.425[0.127] 9.923[0.068] 9.387[0.085] 9.505[0.089]

4M 12.915[0.018] 11.352[0.080] 9.882[0.041] 9.391[0.076] 9.543[0.068]

5M 12.954[0.053] 11.355[0.112] 9.930[0.105] 9.449[0.119] 9.645[0.103]

6M 12.946[0.041] 11.279[0.064] 9.815[0.005] 9.359[0.014] 9.628[0.018]

9M 12.779[−0.011] 11.150[0.062] 9.788[0.055] 9.374[0.054] 9.679[0.017]

1Y 12.645[−0.021] 10.936[−0.015] 9.566[−0.084] 9.191[−0.103] 9.617[−0.102]

18M 12.500[−0.080] 10.879[−0.092] 9.606[−0.187] 9.313[−0.206] 9.741[−0.199]

2Y 12.414[−0.064] 10.916[−0.074] 9.735[−0.150] 9.492[−0.178] 9.899[−0.184]

the Heston model does. Theoretically, the LV model and the LSV model are more

likely to achieve zero calibration errors, whereas the Heston model can’t. In practice,

there are still some small errors remained for the LV model and the LSV model due to

numerical methods. Usually these numerical errors of the LSV model are larger than

the LV model, because the LSV model involves more complex numerical methods

than the LV model. In Table 4.5, the calibration errors for LSV model are very low,

which demonstrate the effectiveness of the numerical methods presented in Sects. 4.2

and 4.3.

The model parameters for the SV part of the LSV model are acquired from the

calibrated Heston model, except that the volatility of variance is multiplied by the

mixing fraction parameter, which is set to 0.4 here. The model parameter, i.e. leverage

surface σL SV (St , t) in the LSV model is shown in Fig. 4.3.

As stated above, the key problem of the LSV model implementations is to solve

the FPE accurately to get low calibration errors. The FPE (4.8) is about the transition

probability p. To show the numerical stability, we export the time evolution of the

transition probability p in Eq. (4.8) to Fig. 4.4. From Fig. 4.4, we can see that the

evolution of transition probability is stable. It is noted that for numerical stability,
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Fig. 4.3 Leverage surface in LSV Model for EUR/USD

we make the following transformation to spot s and variance v when calculating

Eq. (4.8) numerically: Yt = ln (St/S0), Z t = ln (Vt/V0).

We also compare the pricing results of reverse knock-out barrier options, which

are up-and-out single-barrier call options, and traded quite frequently in the market.

The pricing method is the backward PDE introduced in Sect. 4.3. The prices of the

three different models, as well as the market prices, are summarized in Table 4.6.

The market prices are collected from Bloomberg. We can see that the LSV model

provides the prices which are closest to the market prices.

4.5 Conclusion and Future Works

In this paper, we detail our implementations of a Heston-type LSV model. The model

calibration is based on solving a Fokker–Planck Equation iteratively. For derivatives

pricing, both the backward PDE method and Forward Monte Carlo method are intro-

duced. In numerical results, the low calibration errors and relatively accurate pricing

results demonstrate the effectiveness of the methods presented in this paper. For

future works, the most important task is to improve the calibration stability. In our

implementations, we face the similar problem described in Ait (2013): the calibration
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Fig. 4.4 Time evolution of the transition probability

Table 4.6 Pricing results of reverse knock-out barrier options

Tenor Strike Barrier Heston LV LSV Market price

1M 1.1269 1.15 1430 962 1054 1035

1M 1.1269 1.17 6001 5920 6072 5997

3M 1.1293 1.16 2262 922 1173 1087

3M 1.1293 1.2 10855 9287 9812 9901

6M 1.1331 1.19 6925 3328 4323 3883

6M 1.1331 1.24 16907 14170 15322 15102

1Y 1.1417 1.22 9787 4477 6103 5212

1Y 1.1417 1.3 25057 20601 22530 21936

becomes instable for large volatility-of-variance and longer maturity. Two ways are

supposed to improve the calibration stability: one is to add a zero-flux boundary

condition when solving the FPE (Lucic 2013; Gottker and Spanderen 2014); the

other is to perform forward induction of backward PDE (Andreasen and Huge 2010).
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Credit Risk



Chapter 5

Estimating Distance-to-Default with
a Sector-Specific Liability Adjustment

via Sequential Monte Carlo

J.-C. Duan and W.-T. Wang

Abstract Distance-to-Default (DTD), a widely adopted corporate default predictor,

arises from the classical structural credit risk model of Merton (1974). The modern

way of estimating DTD applies the model on an observed time series of equity val-

ues along with the default point definition made popular by the commercial KMV

model. It is meant to be a default trigger level one year from the evaluation time, and is

assumed to be the short-term debt plus 50% of the long-term debt. This default point

assumption, however, leaves out other corporate liabilities, which can be substantial

and particularly so for financial firms. Duan et al. (2012) rectified it by adding other

liabilities after applying an unknown but estimable haircut. Typical DTD estimation

uses a one-year long daily time series. With at most four quarterly balance sheets, the

estimated haircut is bound to be highly unstable. Post-estimation averaging of the

haircuts being applied to a sector of firms is thus sensible for practical applications.

Instead of relying on post-estimation averaging, we assume a common haircut for

all firms in a sector and devise a novel density-tempered expanding-data sequen-

tial Monte Carlo method to jointly estimate this common and other firm-specific

parameters. Joint estimation is challenging due to a large number of parameters, but

the benefits are manifold, for example, rigorous statistical inference on the common

parameter becomes possible and estimates for asset correlations are a by-product.

Four industry groups of US firms in 2009 and 2014 are used to demonstrate this

estimation method. Our results suggest that this haircut is materially important, and
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varies over time and across industries; for example, the estimates are 78.97% in 2009

and 66.4% in 2014 for 40 randomly selected insurance firms, and 0.76% for all 31

engineering and construction and 83.92% for 40 randomly selected banks in 2014.

5.1 Introduction

Corporate credit risk is a common concern for all financial institutions due to their

natural exposures to firms through lending activities. From the perspective of banks,

the Basel Capital Accord and its compliance adds further importance to model-

ing credit risks. The investment community cares about corporate credit risk too

due to potential losses to their portfolios. Policy makers/regulators also pay a great

deal of attention to corporate credit risk because of the destabilizing effect on the

economy/markets when massive corporate defaults occur. Since the seminal credit

risk model of Merton (1974), viewing corporate capital structure as an option-like

arrangement has gained a wide acceptance in assessing corporate default probabil-

ities. Typically, fundamental information from the balance sheet and equity prices

from the stock market are utilized in estimating the model. A particularly important

risk measure out of Merton’s model is distance-to-default (DTD), whose practical

usage has been made popular by the commercial KMV model.

DTD is a widely adopted corporate default predictor. Its empirical estimate is

typically obtained by using an observed time series of equity values along with some

capital structure attributes. For practical applications, a typically complex capital

structure must be simplified. This is usually done through the default point definition

made popular by the KMV model. The default point is meant to be the default trigger

level one year from the evaluation time, and the KMV default point, according to

(Crosbie and Bohn, 2003), equals short-term debt plus 50% of the long-term debt.

This default point definition, however, leaves out a firm’s other liabilities, which can

be substantial and particularly so for financial firms. Duan et al. (2012) proposed to

add to the default point all remaining liabilities subject to a haircut, and estimated

this haircut by applying the transformed-data maximum likelihood method of Duan

(1994, 2000). In typical applications involving one-year long daily time series, only

four quarterly balance sheets are available, which offer limited information in identi-

fying the haircut. Thus, averaging the estimates for firms in the same corporate sector

and then applying the same haircut to all firms in a two-stage estimation seems to be

a sensible and practical solution. The two-stage approach has in fact been adopted by

the Credit Research Initiative’s live corporate default prediction system at the Risk

Management Institute, National University of Singapore.

We propose a density-tempered expanding-data sequential Monte Carlo (SMC)

method to estimate the haircut without relying on ad hoc averaging. This haircut is

estimated jointly along with all other parameters for individual firms in the same

corporate sector. This estimation task is technically challenging because of its high

dimensionality (easily over one hundred parameters). Our method progressively adds

a block of firms to the sample, and each time the likelihood function due to the



5 Estimating Distance-to-Default with a Sector-Specific … 75

additional data is density-tempered in a way that a somewhat arbitrary initial SMC

sample of the parameters for these additional firms can be brought through a sequence

of steps (reweighting, resampling and support boosting) to eventually arrive at a

sample of parameters representing the distribution implied by the target likelihood.

Our method combines the two recently emerged SMC techniques: (1) density-

tempered SMC by Del Moral et al. (2006) and Duan and Fulop (2015), and (2)

expanding-data SMC by Chopin et al. (2013) and Fulop and Li (2013). Our method

is not a simple combination of the two SMC techniques, however. Expanding data in

our context is to increase the number of firms as opposed to increasing the number

of observations on the same set of firms, and thus it is accompanied by an increase in

the number of parameters. The second key difference is our frequentist interpretation

of the estimation problem as in Chernozhukov and Hong (2003), and for which we in

effect assume an improper prior, meaning that all parameters are treated equally likely

before seeing the data. On the methodological front, our innovation is to do away

with the need for a prior distribution in the sequential technique, which is accom-

plished by introducing a somewhat arbitrary but sensible initialization sampler with

an analytical density function; for example, multivariate normal or truncated normal

when some parameters are subject to domain restrictions. The density associated

with this initialization sampler is then absorbed into the importance weight.

Joint estimation with this density-tempered expanding data SMC method is

demonstrated with four sectors of US firms (insurance, banks, airlines, and engi-

neering and construction) in 2009 and 2014, respectively. Our results suggest that

this haircut is materially important, for example, the estimate is 52.19% for all 37

Engineering and Constructions in 2009 and 83.92% for 40 randomly selected banks in

2014. Joint estimation also yields estimates materially different from those obtained

with the two-stage estimation method; for example, 92% for banks in 2009 under

the former versus 72.61% under the latter, and the difference is way outside the 95%

confidence interval obtained with the SMC method.

In addition to its methodological rigor, joint estimation has another advantage

of generating asset correlations among members of a corporate sector. For example,

banks and insurers show a significantly heightened level of asset correlations in 2009

as compared to 2014, which is consistent with 2009 being in the midst of a global

financial crisis. For the airlines and engineering and construction sectors, a similar

pattern exists but the magnitude of the difference in asset correlations are far less

pronounced.

The DTD estimates generated by the two-stage method are sometimes comparable

to those by our joint estimation method, for example, the engineering and construction

industry in both years. For banks, however, the DTDs from the two methods are quite

different. The magnitude aside, the correlations (Kendall or Pearson) between the

estimates of the DTDs from the two methods exceed 80% except for banks which

exhibit substantial but lower correlations as compared to other sectors.
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5.2 DTD Subject to a Sector-Specific Liability Adjustment

Typical DTD estimation using a time series of equity values is performed on a firm-

by-firm basis. If a corporate sector is to share a common parameter, estimation will

require one to stack together all equity time series in that sector in order to reflect asset

correlations among firms. To address asset correlations, we modify the Merton (1974)

model by incorporating a latent common risk factor for the sector. This modification

will, however, retain the Merton model’s original results on a firm-by-firm basis.

5.2.1 The Structural Credit Risk Model with a Common

Liability Adjustment

Let Vi,t be the unobserved asset value of firm i at time t . Per usual, it follows a

geometric Brownian motion, but we assume a common factor to allow for asset

correlations:
dVi,t

Vi,t

= μi dt + βi d Bc
t + νi d Bi,t (5.1)

where Bc
t and Bi,t are two independent standard Brownian motions, βi is the firm

specific coefficient used to capture how firm i responds to the common risk factor,

Bc
t , and νi is a volatility coefficient to reflect the idiosyncratic risk of firm i . The total

variance naturally becomes σ2
i = β2

i + ν2
i . Let Fi t denote the default point at time

T below which firm i will default, and Fi,t is known at time t . The Merton (1974)

model gives rise to the following equity value of firm i :

Ei,t = Vi,t�(di,t ) − Fi,t e
−r(T −t)�(di,t − σi

√
T − t) (5.2)

where �(.) is the standard normal cumulative distribution function and

di,t =
ln

(

Vi,t

Fi,t

)

+
(

r + σ2
i

2

)

(T − t)

σi

√
T − t

. (5.3)

The time-t probability of default equals �(−DT Di,t ), where

DT Di,t =
ln

(

Vi,t

Fi,t

)

+
(

μi − σ2
i

2

)

(T − t)

σi

√
T − t

. (5.4)

The above DTD formula is, however, rarely used in practice because parameter

μ is well known to be subject to huge sampling errors when daily time series

is used in estimation. A modified DTD formula avoiding μ is typically used in

practice; for example, Crosbie and Bohn (2003) and Duan and Wang (2012). This
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modified formula has also been adopted by the live corporate default prediction sys-

tem of the Credit Research Initiative at the Risk Management Institute, National

University of Singapore (NUS-RMI 2015). Specifically, this modified formula,

denoted by DTD* is:

DT D∗
t :=

ln
(

Vi,t

Fi,t

)

σi

√
T − t

(5.5)

Following Duan et al. (2012), the default point is assumed to be sector-specific;

that is, Fi,t = SDi,t + 0.5L Di,t + δO L i,t where the the short term debt (SDi,t ) is

taken as total, the long term debt (L Di,t ) is halved, and other liabilities (O L i,t )

is subject to a unknown haircut common to all firms in the industry sector. This

default point formula reduces to the KMV model’s default point definition when

δ = 0. The ideal behind the KMV default point is a recognition that the debts of a

firm typically cover a wide range of maturities, and a simple way of adapting the

reality to the single-maturity set-up of the Merton model is to apply a 50% haircut

to the longer-term debts. As noted in Duan et al. (2012) and further elaborated in

Duan and Wang (2012), financial firms tend to have an extremely large amount of

other liabilities vis-a-vis short-term and long-term debts (e.g., deposits for banks and

policy obligations for insurers can amount to about 80% of their total liabilities).

Thus, leaving other liabilities out of the default point will significantly distort the

DTD estimate. However, the appropriate haircut is unknown and has to be estimated.

Estimating a firm-specific δ is not a sensible approach, because corporate balance

sheets are available at best quarterly. The typical application of using one-year time

series of daily equity values only offers three change points in liabilities, leading to a

highly noisy estimate of δ. Common δ for a corporate sector is obviously a sensible

compromise, but the joint estimation becomes too numerically challenging. Thus,

Duan et al. (2012) employed a two-stage approach, which first estimates δ along

with other model parameters for each firm in a sector, then averages all δ estimates

in the sector, and finally fixing at the average δ, re-estimates other parameters for

each firm in the sector. As mentioned earlier, this two-stage approach has also been

adopted for the live corporate default prediction system maintained by the CRI team

at the Risk Management Institute, National University of Singapore. We show later

that joint estimation with all firms in a sector, instead of the two-stage approach, is

actually feasible by adapting the modern density-tempered SMC technique to this

specific estimation problem.

5.2.2 The Transformed-Data Likelihood

Duan (1994, 2000) proposed the transformed-data maximum likelihood estimation

method for estimating parameters using derivative contract while the asset values

are not directly observable. We apply the method to our joint estimation prob-

lem. Let V̂i,t (σi , δ) denote the implied asset value computed at (σi , δ) using the
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observed equity value, Ei,t , where the inverse exists and is unique, because Eq. (5.2)

is monotonically increasing in Vi,t . By the process in Eq. (5.1), the N -firm one-period

joint distribution at time t − 1 is of multivariate normality with mean vector μ1:N
and covariance matrix Σ1:N ,1:N :

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ln(
V̂1,t (σ1,δ)

V̂1,t−1(σ1,δ)
)

ln(
V̂2,t (σ2,δ)

V̂2,t−1(σ2,δ)
)

...

ln(
V̂N ,t (σN ,δ)

V̂N ,t−1(σN ,δ)
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∼ �(μ1:N ,Σ1:N ,1:N ). (5.6)

where

μ1:N =

⎡

⎢

⎢

⎢

⎢

⎣

μ1 − 1
2
σ2

1

μ2 − 1
2
σ2

2
...

μN − 1
2
σ2

N

⎤

⎥

⎥

⎥

⎥

⎦

and Σ1:N ,1:N =

⎡

⎢

⎢

⎢

⎣

β2
1 + ν2

1 β1β2 · · · β1βN

β2β1 β2
2 + ν2

2 · · · β2βN

...
. . .

...

βN β1 βN β12 · · · β2
N + ν2

N

⎤

⎥

⎥

⎥

⎦

Also evident from the above, changing the sign of {βi , i = 1, 2 · · · , N } all at once

will not change the density function of the above system. For identification, therefore,

one can impose a positive sign on any one of them, say, β1, as long as it is not equal

to zero.

As argued in Duan et al. (2012), a firm’s asset value may change dramatically

due to major investment and financing activities. Hence, the asset value implied

from the observed equity value is better standardized using the corresponding book

value of assets. This adjustment is to remove the scale effect so as to better capture

the dynamics for the assets in place instead of reacting to jumps caused by capi-

tal structure changes. Let Ŵ t,1:N = [ln(V̂1,t (σ1, δ)/A1,t ), ln(V̂2,t (σ2, δ)/A2,t ), · · · ,

ln(V̂N ,t (σN , δ)/AN ,t )]′, where Ai,t is book asset value of firm i at time t . The

transformed-data log-likelihood function can be derived by taking into account

the Jacobian of the transformation from equity value to asset value. We introduce

θi : j = {(μk,βk, νk), k = i, · · · , j} to stand for the set of the firm-specific parame-

ters from Firm i to j inclusive. Note again that σk is a deduced parameter where

σ2
k = β2

k + ν2
k .

For a time series sample of equity values on N firms over t = 1, 2, · · · , T , denoted

by E1:N , the log-likelihood function is

ln L(δ,θ1:N ; E1:N )

= − N (T − 1)

2
ln(2π) − T − 1

2
ln (det(Σ1:N ))

−1

2

T
∑

t=2

(

�Ŵ t,1:N − μ1:N

)′
Σ

−1
1:N ,1:N

(

�Ŵ t,1:N − μ1:N

)
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−
T

∑

t=2

1′
N Ŵ t,1:N −

T
∑

t=2

N
∑

i=1

ln �

(

di,t (V̂i,t (σi , δ), Fi,t (δ),σi )

)

(5.7)

In the above, we have made explicit some elements of the di,t function defined in

Eq. (5.3) so that it is understood as a function of those model parameters. Note that

�Ŵ t,1:N = Ŵ t,1:N − Ŵ t−1,1:N and 1N is an N -dimensional column vector of 1.

Note that directly inverting Σ1:N ,1:N would create a heavy computational burden

when n is relatively large. Under our model specification, this matrix is easily invert-

ible with the Sherman–Morrison formula. Specifically, Σ1:N ,1:N can be decomposed

into the sum of a diagonal matrix A = diag( ν2
1 , . . . , ν2

N ) and the outer product of

a column vector υ = [ β1, . . . ,βN ]′ with itself. If 1 + υ′ A−1υ �= 0, then

Σ
−1
1:N ,1:N =

(

A + υυ′)−1 = A−1 − A−1υυ′ A−1

1 + υ′ A−1υ
. (5.8)

Missing data invariably occur in the real-life data sample. In our case, missing data

can occur due to some required items in the balance sheet are occasionally absent

or stock prices are not available for some firms at some time points. The likelihood

function in Eq. (5.7) can be modified to allow for missing data. Specifically, one

adjusts the number of firms, i.e., N , according to data availability at time t ; for

example, there are s firms with missing data at time t . Once the remaining N − s

implied asset values are computed according to Eq. (5.2), the implied asset returns

of these firms again follows a multivariate normal distribution with an (N − s) sub-

vector of μ1:N and an (N − s) sub-matrix of Σ1:N ,1:N . Since missing data may occur

differently over time, the adjustment to the likelihood function in Eq. (5.7) will have

to be time-dependent. To make the computer code run efficiently, it will be useful to

first sequence those firms without missing data and follow by those with missing data.

Particularly, firms with similar missing data patterns are better grouped together so

that the likelihood function of multiple firms can be evaluated in a larger time block.

5.3 Parameter Estimation by the Density-Tempered

Expanding-Data Sequential Monte Carlo

The number of parameters in the likelihood function can be quite large; for example,

there were 327 banks in the US in December 2009 giving rise to 982 parameters.

Even for the relatively small airlines industry, there were 12 firms in December 2014

totaling 37 parameters to be jointly estimated. The density-tempered expanding-data

SMC seems to be the only practical way for estimating such large systems.

Our density-tempered expanding-data SMC method combines the two recently

emerged SMC techniques: (1) density-tempered SMC by Del Moral et al. (2006)

and Duan and Fulop (2015), and (2) expanding-data SMC by Chopin et al. (2013)

and Fulop and Li (2013). The common thread in these methods is to find a bridge
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linking the prior to the posterior distribution in the Bayesian context of parameter

estimation. In the case of density-tempering, the likelihood is raised to a power

between 0 (corresponding to the prior) and 1 (corresponding to the posterior) so that

by applying a simple self-adapted control, one can sure-footedly migrate from a set of

parameter particles representing the prior to the final set of particles for the posterior.

The expanding-data SMC in the language of Duan and Fulop (2015), on the other

hand, creates a bridge by gradually adding data so that the sequence of intermediate

posteriors, represented by different sets of parameter particles and corresponding to

various intermediate likelihoods, eventually goes to the final posterior distribution. As

argued and demonstrated in Duan and Fulop (2015), density-tempering is a far more

stable SMC scheme than the expanding-data approach. In our case, expanding data

gradually is because handling a large number of firms all at once is not necessary and

in fact not ideal in the earlier stage of estimation due to the extra computational load

involved. By sequentially expanding the data set, one in effect only approximately

density-temper the incremental likelihood to ensure proper distribution migrations

along the way.

Our method is not a simple combination of the two SMC techniques. Expand-

ing data in our context is to increase the number of firms as opposed to increasing

the number of observations on the same set of firms, and thus it is accompanied

by an increase in the number of parameters. The second key difference is our fre-

quentest interpretation of the estimation problem, and for which we in effect assume

an improper prior, meaning that all parameters are treated equally likely before see-

ing the data. Our methodological innovation is to do away with the prior distribution,

and is done by introducing a somewhat arbitrary but sensible initial sampler with

an analytical density function; for example, multivariate normal or truncated nor-

mal when some parameters are subject to domain restrictions. The corresponding

methodological change needed is to replace the likelihood function, used in density-

tempering or expanding-data, with the ratio of the likelihood over the initialization

density.

We first define the log-likelihood function for the new firms conditional on the

firms already being added (Ns < Nq ); that is,

ln L(δ,θ1:Nq
; Ŵ t,Ns+1:Nq

, t = 1, · · · , T | E1:Ns
)

= − (Nq − Ns)(T − 1)

2
ln(2π) − T − 1

2
ln

(

det(Σ Ns+1:Nq |Ns
)
)

−1

2

T
∑

t=2

(

�Ŵ t,Ns+1:Nq
− μt,Ns+1:Nq |Ns

)′
Σ

−1
Ns+1:Nq |Ns

(

�Ŵ t,Ns+1:Nq
− μt,Ns+1:Nq |Ns

)

−
T

∑

t=2

1′
Nq−Ns

Ŵ t,Ns+1:Nq
−

T
∑

t=2

Nq
∑

i=Ns+1

ln �

(

di,t (V̂i,t (σi , δ), Fi,t (δ),σi )

)

(5.9)
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where

μt,Ns+1:Nq |Ns
= μt,Ns+1:Nq

+ Σ Ns+1:Nq ,1:Ns
Σ

−1
1:Ns ,1:Ns

(

�Ŵ t,1:Ns
− μt,1:Ns

)

(5.10)

Σ Ns+1:Nq |Ns
= Σ Ns+1:Nq ,Ns+1:Nq

− Σ Ns+1:Nq ,1:Ns
Σ

−1
1:Ns ,1:Ns

Σ
′
Ns+1:Nq ,1:Ns

(5.11)

The above two items are respectively the covariance matrix and mean vector

for the (Nq − Ns)-dimensional asset returns corresponding to the new firm block,

conditional on the asset returns of the existing Ns firms.

Our model’s parameters can be divided into to two groups – common (i.e., δ)

and firm-specific (i.e., θ1:N ). We are interested in the recursive exploration of the

sequence of intermediate distributions with the recursion associated with data expan-

sion and density-tempering. The initialization sampler’s density for the firm-specific

parameters from Firm i to j is denoted by I0(θi : j ), whereas the one for the com-

mon parameter is denoted by I0(δ). For the first block of N1 firms, its initialization

sampler is independent of I0(δ) so that the joint sampling density is I0(δ)I0(θ1:N1
).

The intermediate distribution (up to a proportional constant) while tempering the

likelihood with γ is defined as

fN1,γ(δ,θ1:N1
; E1:N1

) ∝
(

L(δ,θ1:N1
; E1:N1

)

I0(δ)I0(θ1:N1
)

)γ

× I0(δ)I0(θ1:N1
). (5.12)

The term raised to power γ on the right-hand side of (5.12) is nothing but the impor-

tance weight in a sampling sense. Different SMC schemes depart in how the impor-

tance weight is controlled so as to obtain a quality sample to represent the final

target distribution. Evidently, when γ = 0, fN1,0(δ,θ1:N1
; E1:N1

) is the initializa-

tion density. When γ = 1, fN1,1(δ,θ1:N1
; E1:N1

) = L(δ,θ1:N1
; E1:N1

), which is the

likelihood function, up to a proportional constant, for the data sample up to N1

firms.

When a new block of firms is added (taking from Ns to Ns+1 firms), it will be more

efficient to take advantage of the knowledge about the common parameter already

implied by the first Ns firms and the firm-specific parameters of these Ns firms con-

ditional on the common parameter. In real applications, the common parameter, if it

were implied solely by the newly added firms, might be quite different from the com-

mon parameter suggested by the first Ns firms. When new firms are added, an ideal

re-initialization sampler for the common parameter and the firm-specific parameters

of the first Ns firms will be a mixture distribution combining the updated distribution

revealed by these firms and the original initialization distribution. Specifically, we

use the mixture distribution: I (m)
s (δ,θ1:Ns

) = [λIs(δ) + (1 − λ)I0(δ)]Is(θ1:Ns
| δ)

where Is(δ) and Is(θ1:Ns
| δ) denotes the distribution of the common parameter and

the firm-specific parameters conditional on the common parameter derived from the

SMC sample of the first Ns firms. A natural way of sampling with the conditional

distribution, Is(θ1:Ns
| δ), is to run regressions of θ1:Ns

on δ using the SMC sample

already obtained.
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The tempered distribution (up to a proportional constant) when reaching Ns firms

(for s ≥ 2) is defined as

fNs ,γ(δ,θ1:Ns
; E1:Ns

)

∝
(

L(δ,θ1:Ns−1
; E1:Ns−1

)L(δ,θNs−1+1:Ns
; Ŵ t,Ns−1+1:Ns

, t = 1, · · · , T | E1:Ns−1
)

I
(m)
s−1(δ,θ1:Ns−1

)I0(θNs−1+1:Ns
)

)γ

×I
(m)
s−1(δ,θ1:Ns−1

)I0(θNs−1+1:Ns
). (5.13)

The initialization sampler for the firm-specific parameters associated with the newly

added firms naturally uses the original initialization sampler.

The terms raised to power γ on the right-hand side of (5.13) is again the importance

weight in a sampling sense, controlling sample migration from an initial distribution

to the target distribution. If one can obtain a simulated sample of parameter values

properly representing L(δ,θ1:Ns
; E1:Ns

), this Bayesian posterior with an improper

prior, i.e., the likelihood function, shall converge to the asymptotic distribution.

Hence, their sample means become the parameter estimates, and the confidence

intervals can be straightforwardly obtained. Alternatively, one can use the result of

Chernozhukov and Hong (2003) to justify the use of the SMC sample means and

covariances in inference because the information equality holds when the correctly

specified likelihood function is the target.

Advancing the tempered density will experience two cases. For the initial set

of firms (i.e., N1), moving γ to 1 can be accomplished by applying the following

incremental important weight:

fN1,γ(2)(δ,θ1:N1
; E1:N1

)

fN1,γ(1)(δ,θ1:N1
; E1:N1

)
∝

(

L(δ,θ1:N1
; E1:N1

)

I0(δ)I0(θ1:N1
)

)γ(2)−γ(1)

(5.14)

Advancing from Ns−1 to Ns firms (s ≥ 2) can be executed with the following incre-

mental importance weight:

f
Ns ,γ(2) (δ,θ1:Ns ; E1:Ns )

f
Ns ,γ(1) (δ,θ1:Ns ; E1:Ns )

∝

⎛

⎝

L(δ,θ1:Ns−1
; E1:Ns−1

)L(δ,θNs−1+1:Ns ; Ŵ t,Ns−1+1:Ns , t = 1, · · · , T | E1:Ns−1
)

I
(m)
s−1(δ,θ1:Ns−1

)I0(θNs−1+1:Ns )

⎞

⎠

γ(2)−γ(1)

(5.15)

While maintaining a minimum effective sample size by a self-adaptive control on

γ, one must resample the parameters to even the important weights, and then follow

up with several Metroplis-Hastings (MH) moves to boost the empirical support that

has been reduced due to resampling. At any stage of (Ns, γ), the MH move targets

fNs ,γ(δ,θ1:Ns
; E1:Ns

) and replaces, if accepted, a subset of (δ,θ1:Ns
). In fact, we

need to run block MH moves, because proposing a good-quality parameter vector

of a very high dimension without dividing them into blocks would be difficult. We

first replace the common parameter, δ, and then proceed to replace firm-specific
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parameters sequentially according to how blocks of firms are added. Suppose that

we have 23 firms and 5 firms are added at a time. The MH moves will comprise first

proposing δ for replacement, then 15 parameters associated with the first 5 firms,

then another 15 parameters for next 5 firms, and finally the last block of 9 parameters

for 3 firms.

We compute the realized acceptance rates for the common parameter and each

block of the firm-specific parameters after completing the MH move for the M

parameter particles. The MH move will be repeated for the common parameter and

blocks of firm-specific parameters, but a particular element (i.e., the common para-

meter or a block of firm-specific parameters) will be skipped when its cumulative

realized acceptance rate has reached a target level, say, 100%. This is to ensure that

the empirical support has been properly boosted but without running excessive MH

moves.

A suitable proposal sampler for the common parameter or any block of firm-

specific parameters is fairly easy to come by, and is typically of high quality. This

is because a sample of size, say, M representing fNs ,γ(δ,θ1:Ns
; E1:Ns

) is already

available. The proposal density for the common parameter, δ, is defined as a lin-

ear regression model with normally distributed errors on a subset of m parameters,

denoted by {θ1, θ2, · · · , θm}, randomly selected from the firm-specific parameters,

θ1:Ns
; that is, δ∗ is sampled based on the following regression model estimated to the

parameter sample of size M :

δ = a0 +
m

∑

j=1

a jθ j + ǫ, where ǫ ∼ N (0,ω). (5.16)

Naturally, a sampled δ should be discarded if it is outside of the [0, 1] interval.

For the firm-specific parameters, the proposal sampler is based on a set of regres-

sion models. Consider replacing the firm-specific parameters of a block of firms from

Na + 1 to Nb when the estimation has already been advanced to Ns firms. For each

k between Na + 1 and Nb, we use δ as regressor and estimate the following set of

regressions:

μk = bk,0 + bk,1δ + ǫ1,k

βk = ck,0 + ck,1δ + ǫ2,k (5.17)

νk = dk,0 + dk,1δ + ǫ3,k

where ǫ1,k , ǫ2,k and ǫ3,k are normally distributed with mean zeros and their covariance

matrix is computed from the regression residuals. Over different k’s, (ǫ1,k, ǫ2,k, ǫ3,k)

are treated as independent. In short, the proposal sampler takes the three firm-specific

parameters as correlated for a firm but independent across different firms in a replace-

ment block.

The regression parameters in effect define the proposal sampler, and these regres-

sion parameters are a function of the parameter sample of size M . So, we will use
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Mδ,θ1:Ns
to stand for these sufficient statistics. The proposed new parameters are

denoted by (δ∗,θ∗
1:Ns

). Since we only propose a subset each time, (δ∗,θ∗
1:Ns

) is same

as (δ,θ1:Ns
) except for a particular subset being proposed for replacement.

αNs ,γ{(δ,θ1:N1
) ⇒ (δ∗,θ∗

1:Ns
)}

= min

(

1,
fNs ,γ(δ

∗,θ∗
1:Ns

; E1:Ns
)

fNs ,γ(δ,θ1:Ns
; E1:Ns

)

h(δ,θ1:Ns

∣

∣Mδ,θ1:Ns
)

h(δ∗,θ∗
1:Ns

∣

∣Mδ,θ1:Ns
)

)

(5.18)

By the standard argument, the target intermediate distribution in (5.13) is the station-

ary solution to the Markov kernel defined by the above acceptance probability. Note

that we are using independent proposal, because Mδ,θ1:Ns
reflects the whole sample

of M parameter values as opposed to an individual element, (δ,θ1:Ns
).

Operationally speaking, the MH acceptance probability falls into one of two cases,

and each can be simplified differently.

Case (1): s = 1 when the operation is still on the first block of firms (i.e., 1 : N1)

The first ratio in (5.18) can be expressed as

fN1,γ(δ
∗,θ∗

1:N1
; E1:N1

)

fN1,γ1
(δ,θ1:N1

; E1:N1
)

=
(

L(δ∗,θ∗
1:N1

; E1:N1
)

L(δ,θ1:N1
; E1:N1

)

)γ (

I0(δ
∗)I0(θ

∗
1:N1

)

I0(δ)I0(θ1:N1
)

)1−γ

(5.19)

Case (2): s ≥ 2 when one adds another block of k firms (Ns = Ns−1 + k)

The first ratio in (5.18) can be expressed as

fNs ,γ(δ
∗,θ∗

1:Ns
; E1:Ns

)

fNs ,γ(δ,θ1:Ns
; E1:Ns

)

=
(

L(δ∗,θ∗
1:Ns

; E1:Ns
)

L(δ,θ1:Ns
; E1:Ns

)

)γ
(

I
(m)
s−1(δ

∗,θ∗
1:Ns−1

)I0(θ
∗
Ns−1+1:Ns

)

I
(m)
s−1(δ,θ1:Ns−1

)I0(θNs−1+1:Ns
)

)1−γ

(5.20)

Some of the above ratios may be further simplified to speed up calculation by utilizing

the fact that θ∗
1:Ns

typically shares the same value with θ1:Ns
over some initial segment

of variable length. Assume that the firm-specific parameters to be replaced corre-

sponds to the block of firms from Na + 1 to Nb. Note that δ∗ = δ, θ∗
1:Na−1 = θ1:Na−1,

and θ∗
Nb+1:Ns

= θNb+1:Ns
. Hence,

L(δ∗,θ∗
1:Ns

; E1:Ns
)

L(δ,θ1:Ns
; E1:Ns

)
=

L(δ∗,θ∗
1:Ns

; Ŵ
∗
t,Na+1:Ns

, t = 1, · · · , T | E1:Na
)

L(δ,θ1:Ns
; Ŵ t,Na+1:Ns

, t = 1, · · · , T | E1:Na
)

.

Finally, the second ratio in (5.18) in connection with the proposal density can

naturally be simplified because sampling is only for the firm-specific parameters

pertaining to a specific block of firms and the densities for the parameters outside

the block are never invoked.



5 Estimating Distance-to-Default with a Sector-Specific … 85

To summarize, the whole density-tempered expanding-data SMC algorithm along

with our specific implementation parameters goes as follows:

• Step 1: Initialization

Sample (δ, i = 1, 2, · · · , M) according to the initialization density, I0(δ), which is

taken as a normal distribution with mean 0.5 and standard deviation 0.3, truncated

to [0,1]. Similarly, sample (θ
(i)
1:N1

, i = 1, 2, · · · , M) for the first N1 firms based

on I0(θ1:N1
). We set the initial block size to 5 firms, i.e., N1 = 5. I0(θ1:N1

) is a

product of normal densities, and they are taken as i.i.d. across firms and over the

three firm-specific parameters of a firm. For μi , the mean and standard deviation are

set to 0.2 and 0.2, respectively. In the case of βi , the mean and standard deviation

are 0.15 and 0.05. β1 is restricted to be positive because of the identification issue

discussed earlier in Sect. 2.2, and its sampling is carried out with a truncated normal

distribution. Finally for ln νi , the mean and standard deviation are set to ln(0.1)

and 0.05, respectively. The initial sample is of course equally weighted, i.e., 1/M ,

and M is set to 1,024.

• Step 2: Reweighting and resampling

Set γ(0) = 0. Start from j = 0 and compute the tempered incremental importance

weight:

wγ,γ( j)(δ(i),θ
(i)
1:N1

) =
(

L(δ(i),θ
(i)
1:N1

; E1:N1
)

I0(δ(i))I0(θ
(i)
1:N1

)

)γ−γ( j)

and find γ∗ such that the Effective Sample Size (ESS) is no less than B where B is

set to M/2 = 512. This can be done with a simple grid search to find γ∗ to meet

the condition, which need not be exact. Note that ESS =
(

∑M
i=1 w

γ,γ( j) (δ
(i),θ

(i)
1:N1

)

)2

∑M
i=1 w2

γ,γ( j) (δ
(i),θ

(i)
1:N1

)
.

Resample with the incremental weights to obtain an equally weighted sample of

size M .

• Step 3: Support boosting

If ESS ≥ 0.9M , this support boosting step will be skipped. Otherwise, apply the

Metropolis-Hastings (MH) move to remove duplicates so as to boost the empirical

support (i.e., increase the ESS). Block MH moves are run per the earlier discussion.

First, δ is replaced, and then firm-specific parameters θ1:N1
are replaced in blocks

with k firms at a time, and k is set to 5. Compute the realized acceptance rates (over

M) for the common parameter and different blocks of firm-specific parameters.

The MH move will be repeated for the common parameter and blocks of firm-

specific parameters, but a particular element (i.e., the common parameter or a

block of firm-specific parameters) will be skipped when its cumulative realized

acceptance rate has reached a target level of 100%.

• Step 4: Advance γ to 1

Set γ( j+1) = γ∗. With the support-boosted sample in place, one computes the

tempered incremental important weight and finds γ∗ again as in Step 2. Reweight,

http://dx.doi.org/10.1007/978-3-662-54486-0_2
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resample, and follow with support boosting according to the acceptance probability

in (5.18). Repeat the operations until reaching γ = 1.

• Step 5: Add more firms

Add more firms to take from Ns−1 to Ns , where Ns = Ns−1 + k and k is set to

5 unless less than 5 firms are left. Perform re-initialization by sampling δ using

I
(m)
s−1(δ) = λIs−1(δ) + (1 − λ)I0(δ) and θ1:Ns−1

from Is−1(θ1:Ns−1
| δ), where λ is

set at 0.8 and Is−1(δ) is similar to the truncated normal sampler used in the ini-

tialization, i.e., I0(δ), except for using the sample mean and variance of δ in the

SMC sample up to Ns−1 firms. Sampling θ1:Ns−1
conditional on δ(i) relies on the

following three-dimensional multivariate regression:

θ j = η j,0 + η j,1δ
(i) + ǫ j , where ǫ ∼ N (0,Λ j ) and j = 1, 2, · · · , Ns−1.

Independence across firms is assumed for this sampler, which means Is−1(θ1:Ns−1
|

δ) is a product of Ns−1 three-dimensional multivariate normal densities. Again, β1

must be restricted to be positive for the identification purpose. Thus, θ1:1 is treated
differently where its three elements are sampled only using their sample means
and covariances obtained from the previous stage so as to avoid the complication
arising from the point-specific truncation probability.
Finally, sample the additional parameters, (θNs−1+1:Ns

, i = 1, 2, · · · , M), using the
initialization sampler I0(θNs−1+1:Ns

), which are normally distributed independent
across firms and over different parameters for a firm. Append it to θ1:Ns−1

to become

θ1:Ns
. Set γ(0) = 0. Start from j = 0, and compute the incremental important

weight as in Eq. (5.15):

vγ,γ( j) (δ(i),θ
(i)
1:Ns

) =
⎛

⎝

L(δ(i),θ
(i)
1:Ns−1

; E1:Ns−1 )L(δ(i),θ
(i)
1:Ns

; Ŵ t,Ns−1+1:Ns , t = 1, · · · , T | E1:Ns−1 )

I
(m)
s−1(δ

(i),θ
(i)
1:Ns−1

)I0(θ
(i)
Ns−1+1:Ns

)

⎞

⎠

γ−γ( j)

Find γ∗ such that the ESS is no less than B, and follow with reweighting, resam-

pling and support boosting again. Repeat until reaching γ = 1.

• Step 6: Repeat adding more firms

Repeat Step 5 to take Ns to Ns+1 until finally reaching N firms.

5.4 Empirical Implementation

5.4.1 Data

We obtain the data from the RMI-CRI database (National University of Singapore,

Risk Management Institute, CRI database. Available at: http://rmicri.org [Accessed

August 2015]). The data include (1) the daily market capitalization based on closing

share price and number of shares outstanding on a subset of US firms in four sectors,

http://rmicri.org
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(2) the 3-month US Treasury interest rate series, and (3) the book values of assets and

liabilities (short-term, long-term and the remainder) from quarterly balance sheets for

these US firms. Share prices and interest rates are available daily, but balance sheets

are released quarterly. For a given day, the relevant items are taken from the most

recently available quarterly balance sheet. The firms are classified into 76 industry

groups by Bloomberg Industry Classification System (BICS). To demonstrate our

estimation method for the common liability adjustment factor (i.e., δ), we select four

industry groups: Insurance (BICS 10008-20055), Banks (BICS 10008-20051), Air-

lines (BICS 10004-20018), and Engineering and Construction (BICS 10011-20082)

and focus on two years: 2009 and 2014. Our sample size is 250 daily observations

for each firm up to the end of the year. According to the δ estimates produced by

the RMI-CRI system in its first stage of the two-stage estimation, these four indus-

try sectors show a range of δ’s that helps in gaining a better understanding of our

proposed method.

Table 5.1 presents the capital structures of these four industry sectors in 2009 and

2014. The firms considered must have consecutive data for at least 22 days in a year.

The smallest number of firm is 12 for the airlines industry in 2014 whereas the largest

sector is banks with 327 firms in 2009. Evidently from this table, other liabilities

being left out of the KMV default point formula can be quite substantial, measured as

a fraction of total liabilities. This is particularly so for financial firms such as insurers

and banks with other liabilities being around 80% of the total liabilities. If the haircut,

i.e., δ, is not negligible, DTD of financial firms will be seriously distorted.

As Table 5.1 shows, there are many banks and insurers in their respective sectors.

In the following estimation, we randomly select 40 firms common to 2009 and

2014, and do so for each of these two sectors. In these cases, we in effect jointly

Table 5.1 Capital structure of four industry sectors of US firms

Airlines Engineering & Construction Banks Insurance

2009 2014 2009 2014 2009 2014 2009 2014

# of firms 18 12 37 31 327 312 132 120

Average value

Market

capitalization

1979.77 13428.39 1247.59 1950.87 3311.06 5826.30 4538.22 9657.12

Short-term debt

(SD)

2317.60 4608.96 629.86 783.56 8657.02 9056.90 2433.34 3074.60

Long-term debt

(LD)

3299.49 3863.44 152.52 502.10 6854.90 5607.53 2711.79 2110.10

Other liabilities

(OL)

2673.93 3767.06 136.28 173.28 21408.08 29162.43 24998.16 34612.81

Total liabilities

(TL)

8667.21 15495.66 1597.43 2300.46 40789.69 49114.01 35191.69 47934.07

Total assets

(TA)

8291.01 12239.46 918.66 1458.94 36920.00 43826.85 30143.29 39797.51

OL/TL 24.10% 23.34% 11.32% 11.72% 83.84% 89.06% 79.16% 78.80%
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estimate 121 parameters (1 common plus 40 sets of 3 firm-specific parameters for

each firm). Going all the way to jointly estimate using, say, 327 banks in 2009

(close to 1,000 parameters) would be methodologically feasible, but would require

a GPU parallel computing implementation to complete the estimation task within a

reasonable amount of time.

5.4.2 Results

Table 5.2 presents the results of comparing the estimated haircuts from the density-

tempered expanding-data SMC method with those from the two-stage approach. The

number of firms refers to the firms used in the joint estimation, not the total number

of firms in that sector; for example, banks and insurers are capped at 40. The data

missing rate is computed as the ratio of the number of missing day-firm observations

over the maximum number of day-firms in a particular year. Missing data causes

some algorithmic complications. One missing equity value, for example, results in

two consecutive missing returns. Missing returns can be easily handled when a single

firm is involved. Jointly estimating all firms in a sector as in this paper requires making

adjustments to the conditioning set along the time dimension in order to evaluate the

conditional likelihood function in Eq. (5.9). To improve computational efficiency,

one needs to arrange firms with similar missing data patterns into the same group,

and then leaves groups with more missing data to later processing in the sequential

optimization scheme.

For the two-stage estimation, the average δ of a sector is computed over the firms

in a sector (or 40 firms in the banking or insurance sector) with the haircut values

generated by RMI-CRI in its first stage of the two-stage estimation. Also reported

and labelled as “Used by CRI” are the haircut actually employed by the RMI-CRI

live system, which are averages over a very broad division into financial and non-

Table 5.2 The haircut parameter, δ, for four industry sectors in 2009 and 2014

Airlines Engineering & Construction Banks Insurance

2009 2014 2009 2014 2009 2014 2009 2014

# of firms used in

estimation

18 12 37 31 40 40 40 40

Missing data rate 3.64% 1.93% 1.48% 1.26% 7.53% 6.69% 0.96% 0.18%

Two-stage estimation

Average over firms 0.3493 0.3666 0.5990 0.5009 0.7261 0.6667 0.6262 0.3136

Used by RMI-CRI 0.5671 0.3537 0.5671 0.3537 0.6898 0.5417 0.6898 0.5417

Joint estimation by SMC

Mean 0.1693 0.0074 0.5219 0.0076 0.9200 0.8392 0.7897 0.6640

Q2.5 0.0826 0.0002 0.2847 0.0002 0.8532 0.8170 0.7479 0.6257

Q97.5 0.2527 0.0251 0.7450 0.0277 0.9856 0.8627 0.8356 0.6985
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financial sectors as opposed to more specific sub-sectors used in this study. The

joint estimation results reported in the same table provide the point estimates for

the haircut for different sectors in 2009 and 2014. Also presented in the table are

upper and lower values of the 95% confidence interval. These confidence intervals

suggest that only engineering and construction sector has their estimated haircuts

in 2009 from the two-stage method to be statistically indistinguishable from their

corresponding haircuts obtained under the joint estimation method.

Table 5.3 is used to highlight the difference in the firm-specific parameters. For

the two-stage estimation method, there are only two parameters (μ and σ), and their

sector average values in 2009 and 2014 are reported. In contrast, the joint estimation

method yields β and ν estimates in addition to μ. Note that β and ν can be combined

Table 5.3 Firm-specific parameters for four industry sectors in 2009 and 2014

Airlines Engineering & Construction Banks Insurance

2009 2014 2009 2014 2009 2014 2009 2014

Two-stage estimation

μ 0.0972 0.1527 0.1271 −0.0597 −0.0528 0.0084 −0.0273 −0.0226

σ 0.2722 0.2295 0.4631 0.2893 0.1258 0.0618 0.1963 0.1188

Joint estimation by SMC

μ

Mean 0.2548 0.1610 0.3405 0.0223 0.6243 0.0081 0.0795 0.0091

Median 0.2364 0.2384 0.1903 0.0368 0.2449 0.0117 0.0355 0.0101

Min −0.0056 −0.3828 −0.2527 −0.3455 −0.1439 −0.0948 −0.0776 −0.1247

Max 0.5785 0.5093 2.8807 0.5819 3.0980 0.1101 0.7667 0.2155

β

Mean 0.3719 0.1584 0.1989 0.1248 0.7237 0.0256 0.1624 0.0574

Median 0.3644 0.1710 0.2156 0.1343 0.4694 0.0271 0.1352 0.0455

Min 0.0164 0.0677 −0.1017 0.0227 −0.2294 −0.0048 0.0657 0.0123

Max 0.6770 0.2732 0.3928 0.2272 2.6869 0.0900 0.5246 0.1648

ν

Mean 0.2480 0.1781 0.4041 0.2567 0.2361 0.0392 0.1508 0.0959

Median 0.2095 0.1392 0.3221 0.2100 0.1560 0.0315 0.0860 0.0650

Min 0.1181 0.1066 0.1305 0.0957 0.0523 0.0199 0.0404 0.0114

Max 0.5752 0.3404 1.3683 0.9328 1.0132 0.1143 0.4923 0.6636

Asset volatility: σ =
√

β2 + ν2

Mean 0.4717 0.2431 0.4809 0.2952 0.7821 0.0492 0.2308 0.1142

Median 0.4738 0.2246 0.3889 0.2639 0.4971 0.0445 0.1735 0.0803

Min 0.2314 0.1362 0.2158 0.1150 0.0679 0.0267 0.1007 0.0167

Max 0.7087 0.3988 1.3721 0.9362 2.8716 0.1455 0.7130 0.6838

Asset correlation

Mean 0.6096 0.4310 0.2627 0.2375 0.7055 0.2476 0.5828 0.3557

Median 0.6870 0.4066 0.2613 0.2273 0.8217 0.2111 0.5986 0.3465

Min 0.0186 0.1815 −0.0641 0.0032 −0.8382 −0.0895 0.0517 0.0737

Max 0.9261 0.6897 0.7452 0.6323 0.9782 0.7290 0.8768 0.7298
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to produce σ estimate and also asset correlations. For some sectors, two methods

yield distinctively different σ estimates; for example, airlines and banks in 2009. In

general, the σ estimates by the joint estimation method are higher than those obtained

by the two-stage method. The summary statistics on asset correlations suggest that

asset were much more correlated in 2009 as compared to 2014. This is in agreement

with the common perception of increased correlations during the 2008–2009 global

financial crisis period.

Table 5.4 summarizes the DTDs generated by two estimation methods for the four

sectors in 2009 and 2014. The DTD estimates generated by the two-stage method are

in some cases comparable to those by the joint estimation method; for example, the

engineering and construction industry in both years. For banks, however, the DTD

estimates from the two methods are quite different. Generally speaking, the two-stage

method yields higher DTD estimates for all sectors in 2009, when markets were more

volatile then. A higher DTD implies a higher solvency, and thus the two-stage method

leads to a conclusion that firms were safer than they actually were. The magnitude

aside, Kendall’s τ or Pearson correlation of the two set of DTD estimates exceed

80% except for banks. The correlations for banks are much lower in magnitude but

still substantial. Take together, we can conclude that the DTDs from two estimation

methods are materially different. When used as a default predictor in a reduced-form

model, different estimation methods likely yield different prediction performances.

It is reasonable to conjecture that the joint estimation will generate a better default

predictor, either judging intuitively from its characteristics over the financial crisis

period or simply based on its methodological rigor.

Table 5.4 DTD comparison for four industry sectors in 2009 and 2014

Airlines Engineering & Construction Banks Insurance

2009 2014 2009 2014 2009 2014 2009 2014

Two-stage estimation (RMI-CRI values)

Mean 1.5749 4.6966 2.7687 4.4324 0.8708 4.1698 2.2356 5.9887

Median 1.4447 4.2140 3.0445 3.9109 0.8303 4.1269 2.4128 5.5646

Min −0.7147 2.8421 −0.0122 0.5205 −1.2278 0.9697 −0.4286 2.4827

Max 4.0182 7.4182 6.0303 12.8785 3.0753 7.8429 6.9532 11.3443

Joint estimation by SMC

Mean 0.8738 4.7830 2.6743 4.1897 −0.3748 3.8005 1.7170 5.5910

Median 0.6886 4.4713 2.8580 3.6562 −0.5219 3.8501 1.9077 5.0447

Min −0.7657 2.8093 −0.0433 0.4990 −1.4501 0.8166 −0.6529 2.3012

Max 3.2526 7.6093 5.8595 13.1316 2.0759 6.5182 6.3411 10.1488

Correlation of the two methods

Kendall 0.8382 0.9091 0.9670 0.9901 0.6410 0.8063 0.9190 0.9568

Pearson 0.9635 0.9944 0.9992 0.9988 0.7841 0.9681 0.9889 0.9972



5 Estimating Distance-to-Default with a Sector-Specific … 91

References

Chernozhukov, V., & Hong, H. (2003). An MCMC approach to classical estimation. Journal of

Econometrics, 115, 293–346.

Chopin, N., Jacob, P. E., & Papaspiliopoulos, O. (2013). SMC2: a sequential Monte Carlo algorithm

with particle Markov Chain Monte Carlo updates. Journal of the Royal Statistical Society: Series

B, 75, 397–426.

Crosbie, P., Bohn, J. 2003. Modeling Default Risk, Moodys KMV technical document.

Del Moral, P., Doucet, A., & Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of the

Royal Statistical Society: Series B, 68(3), 411–436.

Duan, J.-C. (2000). Correction: maximum likelihood estimation using price data of the derivative

contract. Mathematical Finance, 10, 461–462.

Duan, J.-C. (1994). Maximum likelihood estimation using price data of the derivative contract.

Mathematical Finance, 4(2), 155–167.

Duan, J.-C., & Fulop, A. (2015). Density-tempered marginalized sequential Monte Carlo samplers.

Journal of Business and Economic Statistics, 33(2), 192–202.

Duan, J.-C., Sun, J., & Wang, T. (2012). Multiperiod corporate default prediction ? A Forward

Intensity Approach, Journal of Econometrics, 170(1), 191–209.

Duan, J.-C., & Wang, T. (2012). Measuring distance-to-default for financial and non-financial firms.

Global Credit Review, 2, 95–108.

Fulop, A., & Li, J. (2013). Efficient learning via simulation: a marginalized resample-move

approach. Journal of Econometrics, 176, 146–161.

Merton, R. (1974). On the pricing of corporate debt: the risk structure of interest rates. Journal of

Finance, 29, 449–470.

Staff, N. U. S.-R. M. I. (2015). NUS-RMI credit research initiative technical report version: 2015

update 1. Global Credit Review, 5, 113–203.



Chapter 6

Risk Measurement with Spectral Capital

Allocation

L. Overbeck and M. Sokolova

Abstract Spectral risk measures provide the framework to formulate the risk aver-

sion of a firm specifically for each quantile of the loss distribution of a portfolio. More

precisely the risk aversion is codified in a weight function, weighting each quantile.

Since the basic coherent building blocks of spectral risk measures are expected

shortfall measures, the most intuitive approach comes from combinations of those.

For investment decisions the marginal risk or the capital allocation is the sensible

approach. Since spectral risk measures are coherent there exists also a sensible capi-

tal allocation based on the notion of derivatives or more in the light of the coherency

approach as an expectation under a generalized maximal scenario.

6.1 Introduction

Portfolio modeling has two main objectives: the quantification of portfolio risk, which

is usually expressed as the economic capital of the portfolio, and its allocation to

subportfolios and individual transactions. The standard approach in credit portfolio

modeling is to define the economic capital in terms of a quantile of the portfolio loss

distribution

qα(L) = F−1
L (α)

The capital charge of an individual transaction is traditionally based on a covariance

technique and called volatility contribution. We refer to Bluhm et al. (2002) for a

survey on credit portfolio modeling and capital allocation.

L. Overbeck (B)

Institut für Mathematik, Universität Gießen, Giessen, Germany

e-mail: Ludger.Overbeck@math.uni-giessen.de

M. Sokolova

Royal Bank of Scotland and Imperial College London, London, UK

e-mail: Maria.Sokolova@rbs.com

© Springer-Verlag GmbH Germany 2017

W.K. Härdle et al. (eds.), Applied Quantitative Finance, Statistics and Computing,

DOI 10.1007/978-3-662-54486-0_6

93



94 L. Overbeck and M. Sokolova

Since the work by Artzner et al. (1997) coherent risk measures are discussed

intensively in finance and risk management. More recent is the question of a more

coherent capital allocation. Especially the use of expected shortfall allocation as

an allocation rule is recommend in Overbeck (2000), Denault (2001), Bluhm et al.

(2002), Kurth and Tasche (2003) and Kalkbrener et al. (2004).

Expected shortfall measures

E Sα(L) =
1

1 − α

∫ 1

α

qu(L)du

are the building blocks of more general coherent risk measures, the spectral risk

measure ρ. These are convex mixtures of expected shortfall measures. They can be

represented by their spectral measure μ through

ρ = |ρμ =

∫ t

0

E Sα(1 − α)μ(da) (6.1)

or as a weighted sum of quantiles with w(α) = μ([0, α]),

ρ = ρμ = ρw =

∫ 1

0

qα(·)w(α)dα. (6.2)

In this paper we apply the allocation rules associated with a spectral risk measure to

a credit portfolio and point out, which consequences to risk management the choice

of the weight function w, the spectral measure μ or the measure

μ̃
def
=(1 − α)μ(dα),

which we call mixing measure and thought to be the most easily one to calibrate

and implement. The theoretical basis of the approach can be found in the basic

papers Kalkbrener (2002), Kalkbrener et al. (2004) and the explicit application to

spectral capital allocation is provided by Overbeck (2004). We will first present the

theoretical foundation of the proposed risk and allocation measures and then discuss

general impact of the choice of the weight or mixing function and finally exhibits

the differences on a concrete credit portfolio example.

6.2 Review of Coherent Risk Measures and Allocation

6.2.1 Coherent Risk Measures

It is well-known that the following four conditions define a coherent risk measure,

Artzner et al. (1997, 1999), Delbaen (2000).
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Formally, a risk measure is nothing else as a positive real valued function r defined

on the set of random variable (potential losses) V. The number r(X) denotes the risk

in portfolio X . r is called coherent if it obeys the following 4 rules.

⊡ Subadditivity (Diversification)

r(X + Y ) < r(X) + r(Y )

⊡ Positive homogenous (Scaling)

r(aX) = ar(X), a > 0

⊡ Monotone

r(X) < r(Y ) if X < Y (almost surely)

⊡ Translation property

r(X + a) = r(X) − a

Convex analysis gives already that a sub-additive positive homogenous function r

can be point wise written as the maximal value of all linear functions which are below

r (Delbaen 2000; Kalkbrener 2002; Kalkbrener et al. 2004). For risk measures this

means that the first two axioms above lead to the following representation

r(X) = max{l(X)|l < r, l linear function} (6.3)

The risk measure evaluate at a loss variable X takes the same value as the largest

value of all linear function which lies below r on V evaluated on X .

Conceptually, this is similar to the gradient of the function r evaluated at the point

X or as the best linear approximation of r which coincides with r at the point X . We

will later see that this intuition gives rise to a sensible capital allocation.

A typical linear function for random variable is the expectation operator. Hence

the basic result by Artzner et al. (1997), Delbaen (2000)

r(X) = sup{EQ[X ]|Q ∈ Q} (6.4)

Q,= Qr , a suitable set of probability measures of absolutely continuous probability

measures Q << P with density d Q/d P , is similar to the representation (6.3).

The set Q is called the generalized scenarios associated with r . If the supremum

is actually taken at some probability measure, this probability measure or its density

with respect to P is called the generalized scenario associated with r . These approach

also fits into the intuitive feature of risk measurement, namely scenario or stress

analysis. For the interpretation in terms of scenarios the formulation with probability

measure is more natural, but for the axiomatic approach to capital allocation the

representation (6.3) is very useful.
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The currently most prominent example of a coherent risk measure is Expected

Shortfall (sometimes called Conditional VaR /tail conditional expectation). It is

denoted by E Sα and measures the average loss above the α-quantile of the loss

distribution. The associated generalized scenarios can be explained as follows:

To each loss variable Y define the scenario as the “historical” calibrated objective

scenario constraint on the condition that the loss variable exceeded its quantile. The

expected shortfall coincides with the largest mean loss in these scenarios. Intuitively,

E{L|L > qα(L)} = max{E{L|Y > qα(Y )}| all Y ∈ L∞}

Even if generalized scenarios are defined as a supremum, in the case of Expected

Shortfall we can identify the density of the maximal “scenario”. For this we need

the formally correct definition of Expected Shortfall at level α. The problem with

the intuitive definition above is the possible positive mass at the quantile itself. The

exact definition of the Expected Shortfall at level α is therefore Acerbi and Tasche

(2002), Kalkbrener et al. (2004):

Definition 6.1

E Sα(L)
def
=(1 − α)−1(E[L1{L > qα(L)}] + qα(L) · [P{L ≤ qα(L)} − α]).

Here we take the quantile defined by

qu(L) = inf{x |P(L ≤ x) ≥ u}

the smallest u-quantile

Since E Sα(L) = E{Lgα(L)} with the function

gα(Y )
def
=(1 − α)−1[1{Y > qα(Y )} + βY 1{Y = qα(Y )}], (6.5)

where βY is a real number and

βY
def
=

P{Y ≤ qα(Y )} − α

P{Y = qα(Y )}
if P{Y = qα(Y )} > 0.

the density of the associated maximal scenario turns out to be the function gα . Note

that E Sα(Y ) = E{Y · g(Y )} and E Sα(X) ≥ E{X · g(Y )} for every X, Y ∈ V .

6.2.2 Spectral Risk Measures

For the interpretation of this density function (6.5) in terms of risk aversion as outlined

in Acerbi (2002), let us reformulate the expected shortfall as an integral over the

quantile function, the inverse of the distribution of L . It is well-known that



6 Risk Measurement with Spectral Capital Allocation 97

E Sα(L) = (1 − α)−1

∫ 1

α

qu(L)du.

The implicit risk aversion with expected shortfall is, that all quantiles below α or

all losses below the α quantile have no weights, i.e. there is no risk aversion and all

losses above the α-quantile have the same risk aversion. Therefore the risk aversion

weight function associated with E Sα turns out to be

wE Sα
(u) = (1 − α)−11(u > α). (6.6)

From a risk management point of view there might be many other weights given to

some confidence levels u. If the weight function is increasing, which is reasonable

since higher losses should have larger risk aversion weight, then we arrive at spectral

risk measures.

Definition 6.2 Let w be an increasing function from [0, 1] such that
∫ 1

0
w(u)du = 1,

then the map rw defined by

rw(L) =

∫ 1

0

w(u)qu(L)du

is called a spectral risk measure with weight function w.

The name spectral risk measure comes from the representation

rw(X) =

∫ 1

0

E Sα(1 − α)μu(da) (6.7)

with the spectral measure μ([0, b]) = w(b). (6.8)

This representation is very useful when we want to find the scenario function repre-

senting a spectral risk measure rw.

Proposition 6.1 The density of the scenario associated with the risk measure equals

Lw
def
= gw(L)

def
=

∫ 1

0

gα(L)(1 − α)μ(dα). (6.9)

Here gα(L) is defined in formula (6.5). In particular

rw(L) = E(L Lw) (6.10)
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Proof We have

rw(L) =

∫ 1

0

E Sα(L)(1 − α)μ(dα)

=

∫ 1

0

E(L Lα)(1 − α)μ(dα)

=

∫ 1

0

max[E{Lgα(Y )}|Y ∈ L∞](1 − α)μ(dα)

≥ max

[∫ 1

0

E

{

L

∫ 1

0

gα(Y )(1 − α)μ(dα)

}

|Y ∈ L∞

]

= max[E{Lgw(Y )}|∀Y ∈ L∞]

≥ E{Lgw(L)}

Hence

rw(L) = max[E{Lgw(Y )}|∀Y ∈ L∞] = E{Lgw(L)}

�

6.2.3 Coherent Allocation Measures

Starting with the representation (6.3) one can now find for each Y a linear function

hY = hr
Y which satisfies

r(Y ) = hY (Y ) and hY (X) ≤ r(X), ∀X. (6.11)

A “diversifying” capital allocation associated with r is given by

�r (X, Y ) = hY (X). (6.12)

The function �r is then linear in the first variable and diversifying in the sense that

the capital allocated to a portfolio X is always bounded by the capital of X viewed

as its own subportfolio

�(X, Y ) ≤ �(X, X).

�(X, X) can be called the standalone capital or risk measure of X . In general we have

the following two results: A linear and diversifying capital allocation �, which is

continuous, i.e. limǫ→0 �(X, Y + ǫX) = �(X, Y )∀X , at a portfolio Y , is uniquely

determined by its associated risk measure, i.e. the diagonal values of �. More specif-

ically, given the portfolio Y then the capital allocated to a subportfolio X of Y is the

derivative of the associated risk measure ρ at Y in the direction of X .
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Proposition 6.2 Let � be a linear, diversifying capital allocation. If � is continuous

at Y ∈ V then for all X ∈ V

�(X, Y ) = lim
ǫ→0

r(Y + ǫX) − ρ(Y )

ǫ
.

The following proposition states the equivalence between positively homogeneous,

sub-additive risk measures and linear, diversifying capital allocations.

Proposition 6.3 (a) If there exists a linear, diversifying capital allocation � with

associated risk measure r , i.e. r(X) = �(X, X), then r is positively homoge-

neous and sub-additive.

(b) If r is positively homogeneous and sub-additive then �r as defined in (6.12) is a

linear, diversifying capital allocation with associated risk measure r .

6.2.4 Spectral Allocation Measures

Since in the case of spectral risk measures rw the maximal linear functional in (6.11)

can be identified as an integration with respect to the probability measure with den-

sity (6.9) from Proposition 6.1, we obtain hY (X) = E{Xgw(Y )} and therefore the

following capital allocation

�w(X, Y ) = E{Xgw(Y )} =

∫ 1

0

E SCα(X, Y )(1 − α)μ(dα) (6.13)

=

∫ 1

0

E SCα(X, Y )μ̃(dα) (6.14)

where E SCα(X, Y ) = E{Xgα(Y )} (6.15)

is the Expected Shortfall Contribution and μ̃ is defined in (6.16). Intuitively, the

capital allocated to transaction or subportfolio X in a portfolio Y equals its expectation

under the generalized maximal scenario associated with w.

6.3 Weight Function and Mixing Measure

One might try to base the calibration or determination of the spectral risk measure

based on the spectral measure μ or the weight function w. Since the weight function

w is nothing else as the distribution function of μ, there is also a 1-1 correspondence

to the more intuitive mixing measure

μ̃(dα) = (1 − α)μ(dα). (6.16)
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If we define more generally for an arbitrary measure μ̃ the functional

ρ̃ =

∫ 1

0

E Sαμ̃(da) (6.17)

then ρ̃ is coherent iff μ̃ is a probability measure. Since

1 = μ̃([0, 1]) =

∫ 1

0

(1 − u)μ(du)

=

∫ 1

0

∫ 1

0

1[u, 1](v)dvμ(du) =

∫ 1

0

∫ 1

0

1[0, v](u)μ(du)dv

=

∫ 1

0

w(v)dv.

If we have now a probability measure μ̃ on [0, 1] the representing μ and w in (6.1),

(6.2) can be obtained by

dμ

dμ̃
=

1

1 − α
(6.18)

w(b) = μ([0, b]) =

∫ b

0

1

1 − α
μ̃(dα). (6.19)

6.4 Risk Aversion

If we assume a discrete measure

μ̃ =

n
∑

i=1

piδαi (6.20)

then the risk aversion function w is an increasing step function with step size of

pi/(1 − αi ) at the points αi

w(b) =
∑

αi ≤b

pi

1 − αi

. (6.21)

This has to be kept in mind. If we assume equal weights for the two expected shortfall

at 99 and 90% then the increase in risk aversion at the first quantile 90% is 0.5/0.1 = 5

and 0.5/0.01 = 50. The risk aversion against losses above the 99% is therefore 11

times higher than against those between the 90 and 99% quantile. It is therefore

sensible to assume quite small weights on E Sα with large αs.
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6.5 Implementation

There are several ways to implement a spectral contribution in a portfolio model.

According to Acerbi (2002) a Monte-Carlo-based implementation of the spectral

risk measure would work as follows:

Let Ln be the n-th realization of the portfolio loss. If we have generated N loss

distribution scenario, let us denote by n: N index of the n-th largest loss which itself

is then denote by Ln:N , i.e. the indices 1 : N , 2 : N , …,N : N ∈ N are defined by the

property that

L1:N < L2:N < . . . < L N :N

The approximative spectral risk measure is then defined by

N
∑

n=1

Ln:N w(n/N )/

N
∑

k=1

w(k/N )

Therefore a natural way to approximate the spectral contribution of another random

variable L i , which specifically might be a transaction in the portfolio represented by

L or a subportfolio of L , is

N
∑

n=1

Ln:N
i

w(n/N )
∑N

k=1 w(k/N )
, (6.22)

where L
n,N
i denotes the loss in transaction i in the scenario n : N , i.e. in the scenario

where the portfolio loss was the n-th largest. It is then expected that

E(L i Lw) = lim
N→∞

N
∑

n=1

Ln:N
i

w(n/N )
∑N

k=1 w(k/N )
.

As in most applications we assume that

L =
∑

i

L i

with the transaction loss variable L i and in the example later we will actually calculate

within a multi-factor Merton-type credit portfolio model.
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6.5.1 Mixing Representation

Let us review the standard implementation of the expected shortfall contribution.

In the setting of the previous setting we can see that for w(u) = 1
1−α

1[α, 1](u) the

weights for all scenarios with n
N

< α is 0 and for all others it is

1
1−α

∑

k={(α)N } 1
1−α

∼=
1

(1 − α)N

(Here [·] denote the Gauss brackets.) Therefore the expected shortfall contribution

equals

1

{(1 − α)N }

N
∑

n=(αn)

Ln:N
i (6.23)

or more intuitively the average of the counterparty i losses in all scenarios where the

portfolio losses was higher or equal than the [αN ] largest portfolio loss.

Due to the fact that we have chosen a finite convex combination of Expected

Shortfall, i.e. the mixing measure

μ̃(du) =

K
∑

k=1

piδαi

and formulae (6.23) and (6.17) we will take for a transaction Li the approximation

SCA(L i , L)vecp, vecα, N =

K
∑

k=1

pi

⎡

⎣

1

{(1 − αi )N }

N
∑

n=[αi N ]

Ln:N
i

⎤

⎦ (6.24)

as the Spectral Capital Allocation with discrete mmixing measure represented by the

vectors vecp = (p1, . . . , pK ), vecα = (α1, . . . , αK ) for a Monte- Carlo-Sample of

length N .

6.5.2 Density Representation

Another possibility is to rely on the approximation of the Expected Shortfall Contri-

bution as in Kalkbrener et al. (2004) and to integrate over the spectral measure μ:
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E(L i Lw) = lim
N→∞

∫ 1

0

{

N
∑

n=1

Ln:N
i

wα(i/N )
∑N

k=1 wα(k/N )
(1 − α)

}

μ(da) (6.25)

If L has a continuous distribution than we have that

E(L i Lw) = E{L i

∫ 1

0

Lαμ(dα)}

=

∫ 1

0

E[L i 1{L > qα(L)}](1 − α)−1μ(dα)

= lim
N→∞

N−1

N
∑

n=1

Ln
i

∫ 1

0

1{Ln > qα(L)}(1 − α)−1μ(dα) (6.26)

If L has not a continuous distribution we have to use the density function (6.9) and

might approximate the spectral contribution by

E(L i Lw) ∼ N−1

N
∑

n=1

Ln
i gw(Ln). (6.27)

The actual calculation of the density gw in (6.27) might be quite involved. On the

other hand the integration with respect to μ in (6.25) and (6.26) is also not easy. If w is

a step function as in the example 1 above, then μ is a sum of weighted Dirac-measure

and the implementation of spectral risk measure as in (6.22) is straightforward.

6.6 Credit Portfolio Model

In the examples below we apply the presented concepts to a standard default only

type model with a normal copula based on an industry and region factor model, with

27 factors mainly based on MSCI equity indices. We assume fixed recovery and

exposure-at-default. For a specification of such a model, we could refer to Bluhm

et al. (2002) or other text books on credit risk modeling.

6.7 Examples

6.7.1 Weighting Scheme

Lets take 5 quantile 50, 90, 95, 99, 99.9% and the 99.98% quantile. We like now to

find weighting scheme for Expected Shortfall, which still gives a nice risk aversion

function. Or inversely we start with a sensible risk aversion as in (6.28) and then

solve for the suitable convex combination of expected shortfall measures.
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As a first step in the application of spectral risk measures one might think to give to

different loss probability levels different weight. This is a straightforward extension

of expected shortfall. One might view Expected Shortfall at the 99%-level view as a

risk aversion which ignores losses below the 99%-quantile and all losses above the

99%-quantile have the same influence. From an investors point of view this means

that only senior debts are cushioned by risk capital. One might on the other hand also

be aware of losses which occur more frequently, but of course with a lower aversion

than those appearing rarely.

As a concrete example one might set that losses up to the 50% confidence level

should have zero weights, losses between 50 and 99% should have a weight w0 and

losses above the 99%-quantile should have a weight of k1w0 and above the 99.9%

quantile it should have a weight of k2w0. The first tranch from 50 to 99% correspond

to an investor in junior debt, and the tranch from 99 to 99.9% to a senior investor and

above the 99.9% a super senior investor or the regulators are concerned. This gives

a step function for w:

w(u) = w01(0.99 > u > 0.5) + k1w01(0.999 > u > 0.99)

+ k2w01(1 > u > 0.999) (6.28)

The parameter w0 should be chosen such that the integral over w is still 1.

6.7.2 Concrete Example

The portfolio consists of 279 assets with total notional EUR 13.7bn and the following

industry and regions breakdown:

The portfolio correlation structure is obtained from the R2 and the correlation

structure of the industry and regional factors. The R2 is the R2 of the one-dimensional

regression of the asset returns with respect to its composite factor, modeled as the

sum of industry and country factor. The underlying factor model is based on 24

MSCI Industries and 7 MSCI Regions (Fig. 6.1). The weighted average R2 is 0.5327

(Fig. 6.2).

The risk contributions are calculated at quantiles 50, 90, 95, 99, 99.9 and 99.98%.

Figure 6.3 shows the total Expected Shortfall Contributions allocated to the indus-

tries normalized with respect to automobile industry risk contributions and ordered

by ESC99%.

In order to capture all risks of the portfolio a risk measure, which combines few

quantile levels, is needed. As one can see, Hardware and Materials have mainly tail

exposure (largest consumption of ESC at the 99.98%-quantile), where Transporta-

tion, Diversified Finance and Sovereign have the second to fourth largest consumption

of ESC at the 50%-quantile, i.e. are considerable more exposed to events happening

roughly every second year as Hardware and Materials.
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Fig. 6.1 MSCI region breakdown. XFGRegionsBreakdown

Fig. 6.2 R2 values of different MSCI industries. XFGRsquared

The spectral risk measure as a convex combination of Expected Shortfall risk

measures at the following quantiles 50, 90, 95, 99, 99.9 and 99.98% can capture both

effects, at the tail and at the median of the loss distribution.

Four spectral risk measures are calculated. The first three are calibrated in terms

of increase of the risk aversion function at each considered quantile as in Fig. 6.4.

https://github.com/QuantLet/XFG/blob/master/XFGRegionsBreakdown
https://github.com/QuantLet/XFG/blob/master/XFGRsquared
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Fig. 6.3 Expected shortfall contributions for different industries at different quantiles

Fig. 6.4 Risk aversion calculated with respect to different methods. The dotted blue, dashed-dotted

and solid lines represent “SCA - decreasing steps”, “SCA - equal steps” and “SCA - increasing

steps” correspondingly. XFGriskaversion

https://github.com/QuantLet/XFG-ToDo/blob/master/_Done/XFGriskaversion
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Fig. 6.5 Risk aversion when the weights are directly set to 0.1 at the 50, 90, 95%-quantiles, 0.15

at the 99 and 99.9%-quantiles and 0.4 at the 99.98%-quantile. XFGriskaversion2

The least conservative one is “SCA - decreasing steps” in which the risk aversion

increases at each quantile by half the size it has increased at the quantile before. “SCA

-equal steps” increases in risk aversion by the same amount at each quantile, “SCA

-increasing steps” increases in risk aversion at each quantile by doubling the increase

at each quantile. The last most conservative one is SCA - 0.1/0.1/0.1/0.15/0.15/0.4,

in which the weights of μ̃ are directly set to 0.1 at the 50, 90, 95%-quantiles, 0.15

at the 99 and 99.9%-quantiles and 0.4 at the 99.98%-quantile as in Fig. 6.5. The last

one has a very steep increase in the risk aversion at the extreme quantiles.

As a comparison to the expected shortfall, the chart below shows the Spectral risk

allocation allocated to industries ordered by SCA - equal steps and normalized with

respect to automobile industry SCA as in Fig. 6.6.

All tables so far were based on the risk allocated to the industries. Much of the

displayed effects are just driven by exposure, i.e. “Automotive” is by far the largest

exposure in that portfolio and all sensible risk measure should mirror this concen-

tration. Interestingly enough the most tail emphasizing measures are the exceptions.

There the largest contributors Hardware and Materials have actually less than 10%

of the entire exposure.

Usually one uses as well percentage figures and risk return figures for portfolio

management. On the chart “RC/TRC” the percentage of total risk (TRC) allocated

to the specific industries is displayed in Fig. 6.7.

For the risk management Fig. 6.8 showing allocated risk capital per exposure is

very useful. It compares the riskiness of the industry normalized by their exposure.

Intuitively it means that if you increase the exposure in “transportation” by a small

amount like 100.000 Euro than the additionally capital measured by SCA-increasing

https://github.com/QuantLet/XFG-ToDo/blob/master/_Done/XFGriskaversion2
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Fig. 6.6 Different risk contributions with respect to different SCA methods

Fig. 6.7 Total risk contributions with respect to different SCA methods
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Fig. 6.8 Total risk contributions with respect to different SCA methods

steps will increase by 2.5%, i.e. by 2.5000 Euro. In that sense it gives the marginal

capital rate in each industry class. Here the sovereign class is the most risky one.

In that portfolio the sovereign exposure was a single transaction with a low rated

country and it is therefore no surprise that “sovereign” performance worst in all risk

measures (Fig. 6.8).

With that information one should now be in the position to judge about the possi-

ble choice of the most sensible spectral risk measure among the four presented. The

measure denoted by SCA based on the weights 0.1, 0.1, 0.1, 0.15, 0.15, 0.4, overem-

phasis tail risk and ignores volatility risk like the 50%-quantile. From the other three

spectral risk measures, also the risk aversion function of the one with increasing

steps, does emphasis too much the higher quantiles. SCA decreasing steps seems

to punished counterparties with a low rating very much, it seems to a large extend

expected loss driven, which can be also seen in the following table on the RAROC-

type Figs. 6.9. On that table “decreasing steps” does not show much dispersion. One

could in summary therefore recommend SCA-equal steps.

For information purpose we have also displayed the Expected Loss/Risk Ratio

for the Expected Shortfall Contribution in Fig. 6.10. Here the dispersion for the ESC

at the 50% quantile is even lower as for the SCA-decreasing steps.



110 L. Overbeck and M. Sokolova

Fig. 6.9 EL/SCA with respect to different SCA methods. XFGELESC

Fig. 6.10 Expected loss/risk ratio for the expected shortfall contribution at different quantiles.

XFGELESC

https://github.com/QuantLet/XFG/tree/master/XFGELESC
https://github.com/QuantLet/XFG/blob/master/XFGELESC
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6.8 Summary

In order to combine different loss levels in one risk measure spectral risk measures

provide a sensible tool. Weighting of the quantiles is usually be done by the risk

aversion function. Starting from an implementation point of view it looks more

convenient to write a spectral risk measure as a convex combination of expected

shortfall measures. However one has to be careful in the effects on the risk aversion

function. All this holds true and become even more important if capital allocation is

considered, which finally serves as a decision tool to differentiate sub-portfolios with

respect to their riskiness. We analyze an example portfolio with respect to the risk

impact of the industries invested in. Our main focus are the different specification of

the spectral risk measure and we argue in favour for the spectral risk measure based

on a risk aversion which has the same magnitude of increase at each considered

quantile, namely the 50, 90, 95, 99, 99.9, and 99.98% quantile. This risk measure

exhibits a proper balance between tail risk and more volatile risk.
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Chapter 7

Market Based Credit Rating and Its

Applications

R.S. Tsay and H. Zhu

Abstract Credit rating plays a critical role in financial risk management. It is like

a name tag of a firm indicating its health condition. Generally, ratings involve a lot

of firm-specific information which is hard to obtain or only available quarterly. In

this chapter, we propose a two-step algorithm involving ARIMA-GARCH modelling

and clustering to obtain a market based credit rating utilizing easily obtained public

information. The algorithm is applied to 3-year CDS spreads of 247 publicly listed

firms. Empirical result of the application and comparisons between the obtained

ratings with the ratings given by agencies show that such a market based credit

rating performs quite well.

7.1 Introduction

Credit rating is a reflection of a firm’s creditworthiness, traditionally provided by

professional rating agencies. It is widely used to measure the credit risk of a com-

pany, i.e. the firm’s ability to meet its debt servicing obligations, and hence plays a

significant role in the financial market. Investors can use credit ratings to aid their

investment decisions, e.g., Erlenmaier (2011), while an issuer may use the rating to

determine the optimal amount of debt outgoing or signal its low investment risk, e.g.,

Nordberg (2010). Some investment funds may restrict investing only on firms whose

credit ratings exceed certain level.

In the past decades, more and more researchers are interested in credit ratings,

especially after the 2008 subprime financial crisis. Some are interested in the effec-

tiveness of agency’s ratings. For example, Kliger and Sarig (2000) showed that the

credit rating can provide better assessment of default risk than publicly-available

information alone. Hull et al. (2004) discussed the relationship between bond yields,
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Credit Default Swap spreads, and credit rating announcements. Others are interested

in proposition or replication of the ratings by the agencies. Altman (1968) used five

financial ratios to predict bankruptcy, and many researchers employed the same fi-

nancial variables based method to quantify credit risk, such as Kaplan and Urwitz

(1979), Ederington (1985) and Kamstra et al. (2001). This approach often involves

substantial firm-specific information which is hard to obtain or only available quar-

terly. Recently, Creal et al. (2014) proposed a market-based credit rating which makes

direct use of the prices of traded assets. The basic idea of market-based credit rating

is that asset prices of traded firms should reflects timely the publicly-available firm-

specific information. Following the same idea, we propose a market-based credit rat-

ing method using CDS spreads and/or their robustified values. The proposed method

is easy to understand and use. As a matter of fact, the ratings are easily reproducible.

Credit Default Swap (CDS) is a financial agreement between a buyer and a seller

in which the buyer makes periodic payments to the seller and receives a payoff from

the seller in exchange if the reference entity defaults before the CDS contract expires.

CDS is widely used with other financial derivatives to hedge the risk or to speculate

on price movements. The periodic payment the buyer makes, which is also known

as the price of CDS, is quoted in spread. Higher spread means the referred entity

has a higher possibility to default from market’s perspective, indicating its lower

creditworthiness. Ericsson et al. (2009) shows that firm leverage, which is closely

related to default risk, plays a significant role in determining its CDS spread. Micu

et al. (2004) also find that rating changes can cause dynamic shifts on CDS markets.

Therefore, there should be a close relation between credit rating and CDS spread. In

this chapter, we leverage this close relationship and show that the proposed credit

rating based on CDS spreads works well in comparison with the results provided by

rating agencies.

The rest of the chapter proceeds as follows. In the next section, we introduce the

methodology used. In Sect. 7.3, we consider empirical analysis and provide some

discussions. The concluding remarks are presented in Sect. 7.4.

7.2 Methodology

Different from the method of Creal et al. (2014), the proposed method uses a two-

stage procedure: forecasting and clustering. Our goal is to make the market-based

credit rating easy to follow and use. In particular, no special program is needed. The

proposed method can be easily reproduced. On the other hand, unlike Creal et al.

(2014), we do not consider ratings of firms that have no CDS data.
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7.2.1 Modeling and Forecasting

Assume that we have time series of daily CDS spreads of N firms. Denote the data

by {yi t |i = 1, . . . , N ; t = 1, . . . , T }. These series have the same maturity. In our

empirical analysis, we use 3-year CDS spreads.

Instead of using yi t directly, we use predictions in the proposed credit rating

method. Rating is necessarily concerning future performance of a firm. Thus, it makes

sense to use predictions. In our empirical analysis, we use 1-step ahead predictions.

If preferred, multi-step predictions can be used. Another reason for using predictions

is to mitigate the impact of outliers. Since firm’s creditworthiness typically does not

change overnight, an abrupt change in CDS spread might be caused by reasons not

related to the fundamentals of a firm. Using predictions can mitigate the impacts of

such isolated outlying observations.

The proposed rating method uses predictions of the level and volatility of a CDS

time series. To obtain the predictions, we apply ARIMA-GARCH models to each

CDS time series. The model entertained can be written as

zi t = (1 − B)di yi t , (7.1)

zi t =

pi
∑

j=1

φ j zi,t− j + ai t +

qi
∑

j=1

θ j ai,t− j , (7.2)

ai t = σi tǫi t , (7.3)

σ 2
i t = αi,0 +

ri
∑

j=1

αi, j a
2
i,t− j +

si
∑

j=1

βi, jσ
2
i,t− j , (7.4)

where di is a nonnegative integer denoting the order of differencing, pi and qi are

nonnegative integers representing the autoregressive (AR) and moving-average (MA)

order of the differenced series zi t , respectively, {ǫt } is a sequence of independently and

identically distributed random variates with mean zero and variance 1, ri and si are

also nonnegative integers indicating the autoregressive conditional heteroscedastic

(ARCH) order and the generalized ARCH order, respectively. The distribution of ǫt

can be Gaussian or standardized Student-t or some skewed distributions with heavy

tails. Equations (7.1) and (7.2) are referred to as the mean equations for yi t whereas

Eqs. (7.3) and (7.4) are the volatility equation. This class of model is general and

applicable to the CDS time series. The parameters of the model in Eqs. (7.2) and

(7.4) are estimated by the maximum likelihood method.

There are several R packages available for building an ARIMA(p, d, q)-

GARCH(r, s) model for a given financial time series. See, for instance, the fGarch

and rugarch packages. The latter package allows for fractional differencing, i.e.,

di of Eq. (7.1) may assume nonnegative real values.

The modeling steps used in this chapter are as follows:

1. Mean equation: For given maximum values of p, d and q, we use the Akaike

information criterion (AIC) to select the order (pi , di , qi ) for the time series yi t .
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As a matter of fact, one can even apply the automatic model selection procedure

auto.arima of the R package forecast to select ARIMA model.

2. ARCH test: Let âi t be the residual series of the mean equation. We apply Ljung-

Box Q(m) statistics to the squared series a2
i t to detect the existence of conditional

heteroscedasticity, also known as the ARCH effect. Under the null hypothesis of

no conditional heteroscedasticity, the test statistic is distributed asymptotically as

χ2
m .

3. Volatility equation: If the ARCH effect is statistically significant, we entertain

ARIMA(pi , di , qi )-GARCH(ri , si ) models with given maximum values r and s

for the GARCH model. Again, AIC is used to select the GARCH order and the

distribution of ǫi t . If the ARIMA order can be reduced as a result of the joint

estimation, we further simplify the mean equation. Again, the modification is

carried out using the AIC.

Our choice of AIC is for simplicity. Other information criteria can be used if needed.

Once an ARIMA-GARCH model is built for the CDS time series yi t , we use

the model to obtain predictions of yi t and its volatility. The forecast origin is the

sample size T . Denote the h-step ahead forecasts of mean and volatility of yi t at

the forecast origin T by xi (h) = (ŷi,T (h), σ̂i,T (h))′. Let Xh denote the collection of

h-step ahead forecasts of mean and volatility at the forecast origin T for all time

series. Specifically, the i-row of Xh consists of xi (h). We use Xh in the proposed

credit rating method.

7.2.2 Clustering

Clustering analysis has a long history in the statistical literature. Many methods

are available, including agglomerative hierarchical methods, K-means, tree-based

methods, and supporting vector machine. In this chapter, we use mainly the K-

means for its wide applicability and nonparametric nature. We also apply a tree-based

method in our discussion.

Consider the predictions in Xh , which contains the mean and volatility of CDS

spreads. Intuitively, a high-quality company would have low values in mean and

volatility, and higher values in either mean or volatility are indicative of higher default

risk. For ease in notation, we shall omit the subscript h and denote the predictions

as X with i th row being xi .

Assume that there are k categories in the rating system. The K-means method

uses some measurement of similarity between companies. In this chapter, we use the

Euclidean distance to measure similarity. The basic idea of the K-means method is

that the distances between members of a cluster should be as small as possible, but

the total distance between the clusters is large. Let S = {Si |i = 1, . . . , k} denote the

k clusters, and mi be the mean vector of members in cluster Si . The K-means method

can be described as
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arg min
S

k
∑

i=1

∑

x∈Si

‖x − mi‖
2.

A company is assigned to one and only one cluster. There are various algorithms

available to achieve K-means clustering. We describe briefly an algorithm below.

Randomly select k points from X and assign them to form k clusters. Since each

cluster has a single element, we denote the initial mean vector of the clusters as

m
(0)

1 , · · · , m
(0)

k . The algorithm then proceeds with the following three steps.

1. Assignment Step: All points xi in X are assigned to S j ∈ S via

j = arg min
u

d(xi , m(0)
u )

where d denotes the Euclidean distance. If there are several j satisfying the

condition, one randomly assigns the point to one of those S j .

2. Updating Step: when all points in X are assigned, update the mean vector of each

cluster, namely

m
(1)

j =
1

∣

∣S j

∣

∣

∑

xi ∈S j

xi ,

where |S j | denotes the number of points in S j .

3. Repeat the Assignment and Updating Steps to obtain m
(2)

j and check the condition

d(m
(2)

j , m
(1)

j ) = 0, j = 1, . . . , k.

If the condition fails, repeat Step 3 until it is satisfied.

It is easy to see that the algorithm aims at achieving the stability of the mean vectors.

With the stable mean vectors, the clustering is stable too. In theory, the prior algo-

rithm achieves local convergence as the result may depend on the initial assignment.

However, one can use different initial assignments to ensure global convergence. In

application, some time series may contain outliers that can weaken the accuracy in

prediction, leading to inferior clustering analysis. In this case, some data processing

might be helpful. For instance, one can apply wavelet smoothing to the observed time

series before the modeling. See Nason (2008) for applications of wavelet methods

in statistics.

7.3 Empirical Analysis

In this section, we apply the proposed method to a collection of 294 CDS series with

3-year maturity from Markit. The data are from January 2004 to September 2014.

A few time series did not start in January 2004. In this case, a shorter time span is
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Table 7.1 ARIMA+GARCH Order Combinations

ARIMA order GARCH order

(0,0) (1,1) (2,1) (2,2)

(0,1,0) 0 0 1 9

(0,1,1) 0 0 1 16

(0,1,2) 1 0 0 9

(1,1,1) 4 0 1 21

(1,1,2) 1 0 0 21

(2,1,2) 2 0 0 26

(3,1,2) 0 0 1 10

(3,1,3) 1 0 0 9

(4,1,4) 0 0 3 9

(4,1,5) 0 12 2 5

(5,1,5) 1 18 1 10

used. Since the observed spreads are small, we analyze yt = log(10000st ), where st

is the observed spreads.

7.3.1 Modeling and Forecasting

Following the proposed method, we start the analysis with ARIMA-GARCH model-

ing. Table 7.1 summarizes the main results of ARIMA-GARCH order selection. The

ARIMA orders are shown in row whereas GARCH orders in column. These results

are selected by AIC with maximum value 5 for both p and q.

From Table 7.1, a majority of the firms assume the GARCH(2,2) structure. On

the other hand, the ARMA orders vary markedly. The need for the first difference in

the CDS spreads is not surprising as it is in agreement with most time series of asset

prices.

To demonstrate, Fig. 7.1 shows the time plots of observed data, fitted values and

1-step ahead prediction for the 3-year CDS spreads of BestBuy and IBM. The black

line, green line, and red point are the observed data, fitted values, and prediction,

respectively. From the plots, the fitted models appear to provide good fits.

The plots in Fig. 7.1 also show marked market impacts and difference between

companies. Both BestBuy and IBM spreads exhibit substantial increases in default

risk during the 2008 financial crisis. On the other hand, the BestBuy spreads show

that the company did not do well in 2013. For the IBM series, there was no clear

increase in default risk after 2011.

Figure 7.2 shows the time plots of log returns of IBM CDS spreads after wavelet

transformation and the associated fitted values. As expected, the model selected by

AIC fits the wavelet transformed data well. The main discrepancies between the data
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Fig. 7.1 Observed data, fitted values, and a prediction of 3-year CDS spreads of Best Buy and IBM

from January 2004 to September 2014. The data are log(10000st ) for the observed spread st
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Fig. 7.2 The log return of IBM 3-year CDS spreads after wavelet transformation (in black) and

the fitted values (in green)

and the fitted value occur during the 2008 financial crisis. The model fits the data

well, especially after 2011. This plot indicates that the rating results of the proposed

method should be robust to the 2008 financial crisis, because we use 1-step ahead

predictions with forecast origin at the end of 2014.

7.3.2 Cluster Analysis

Using 1-step ahead predictions of CDS spreads and their volatilities, we apply the

K-means method of classification. Figure 7.3 plots the total within cluster sum of

squares versus the number of clusters k. The upper figure shows the results for k

from 2 to 10 whereas the lower panel provides a zoom-in view. From the plots, the

number of clusters k should be around 6 or 7.

Since there is a bankrupted firm (RadioShack) in the data, we choose the number

of clusters to be 8. This would allow Radioshack to form its own cluster. With

k = 8, Table 7.2 summarizes the results of K-means clustering method. To ensure

convergence of the K-means method, the results shown are based on 10,000 initial

random starts.

From Table 7.2, most of the firms in our data are clustered into Cluster 1, which

has lower values in mean and volatility. Thus, as expected, most firms have low

default risk. Assuming that the loss recovery rate is 40 %, the expected implied
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(b) Zoom-in Figure

Fig. 7.3 Total within cluster sum of squares (against the number of clusters)

probability of default (IPD) of the best group is 0.002545244
1−0.4

× 3 × 100% = 1.27%,

which appears to be reasonable. This is understandable because the U.S. economy

has largely recovered from the 2008 financial crisis. The default risk of a good

company should be low. The outlying firm belongs to the worst cluster with spread

being ten or hundred times larger than that of other clusters. Such high spread leads

to IPD about 100%, confirming that the firm (RadioShack) is indeed bankrupted.

Other firms showing relatively high CDS spreads include Toy“R”US (1630bps) and

SHC-Acceptance (1715bps). These firms have been known to be in financial stress

in recent years, and they are clustered into the categories 5th to 8th. Note that the
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Table 7.2 Results of K-mean clustering method, where μ and σ denote the mean spread and

volatility of each cluster

Cluster μ σ Size

1 25.45244 0.8541984 196

2 81.26927 2.8876315 51

3 142.66127 5.5291877 32

4 256.70490 28.0481097 5

5 412.27850 7.8975128 5

6 841.41321 102.7335156 2

7 1622.83575 41.0780870 2

8 13910.92850 147.6544963 1

Table 7.3 S&P rating versus the proposed market-based credit rating

S&P Rating Market-Based Rating Rank

1 2 3 4 5

AA+ 1 0 0 0 0

AA 1 0 0 0 0

AA- 5 0 0 0 0

A+ 4 0 0 0 0

A 20 0 0 0 0

A- 19 1 0 1 1

BBB+ 23 2 1 0 0

BBB 27 4 1 0 0

BBB- 10 6 0 0 0

BB+ 2 7 2 0 0

BB 1 2 4 1 0

B+ 0 1 0 0 0

B 0 1 2 1 1

B- 0 0 1 0 0

CCC+ 0 0 0 0 1

estimated IPD and the distribution of firms across clusters match well with the rating

results by ICAP (2013) although they used a different data set.

We also compare results of the proposed rating method with the well-known S&P

credit ratings. With a limited subsample of 154 firms whose S&P ratings are gathered,

results of the proposed clustering method are directional in line with the S&P ratings.

See Table 7.3.

Each cell in Table 7.3 shows the number of firms with S&P rating in row and

the clustering result in column. Although the proposed method does not differentiate

much between good firms, which might be due to the small number of firms available
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for the comparison, it is reassuring to see that firms with high ratings by the proposed

market-based credit rating procedure also have high S&P ratings.

Finally, Fig. 7.4 shows the time plots of median spreads and volatilities for each

cluster obtained by the proposed market-based credit rating method. From the plots,

the differences between clusters are clearly seen, indicating that the proposed rating

method is capable of ranking firms based on their CDS spreads. For instance, Clusters

1 and 2 have lower spreads and volatilities. The defaulted firm had increasing spreads

and volatilities over the data span.

7.3.3 Discussion

Some discussions of the proposed market-based credit rating method are in order.

First, as demonstrated by a small subsample, the proposed rating method can produce

ratings that are directional in line with those of the S&P rating. This is encouraging as

the proposed method only uses the CDS spreads. Indeed, the results show that there

exists a close relationship between CDS spreads and the S&P ratings. To demonstrate,

we apply a tree-based classification procedure to the S&P rating using the one-step

ahead predictions of CDS spreads, indicators of the industrial sectors, and log returns

of the spreads as explanatory variables. In other words, we used the subsample of 154

firms mentioned in previous section to build a classification tree with CDS spreads

and some additional variables. In a classification tree, branches are determined by

relevant explanatory variables with more important variables appearing first and more

often.

For detailed explanation of tree procedures and pruned tree classification, see

James et al. (2013). The resulting tree is shown in Fig. 7.5a. The first few branches

of the tree are obtained by either the spread or the standard error of the spreads.

The industrial sector only appears in the high-level branches. In the plot, we use

alphabets to represent sectors so that the tree is easier to read. Part (b) of Fig. 7.5

shows a pruned tree which provides a clear relationship between the CDS spreads

and the S&P ratings. Consequently, CDS spreads are indeed informative about credit

risk of a firm.

Second, there are ways to improve the proposed model-based credit rating. For

example, a potential weakness of using CDS spreads alone to perform credit rating

is that the method might overlook the variations between industrial sectors. Sim-

ilar to stock returns, the level and volatility of CDS spreads might depend on the

industrial sectors. For instance, healthcare companies tend to have lower volatility

as their demands are more robust to the U.S. business cycles. Table 7.4 provides the

median end-of-year spreads from 2011 to 2013 and the 1-step ahead predictions of

10 industrial sectors to which the 294 time series belong.

From Table 7.4, we see that sectors whose demands are relatively inelastic like

healthcare or industrial sectors have lower spreads all year round while the high-

elastic demand sectors, including financial and consumer goods, have higher spreads.

This is easy to understand because people will lower consumption or investment
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Table 7.4 Median end-of-year CDS spreads from 2011 to 2014 for different industrial sectors

Sector 2011 2012 2013 2014

Basic material 101.32170 66.50631 50.92944 38.05819

Consumer goods 107.78704 68.26233 44.79193 39.74378

Consumer services 109.7089 95.46819 52.94550 39.21939

Energy 70.60976 46.93080 35.96803 33.08610

Financials 164.23591 68.44491 41.62527 32.40109

Healthcare 54.72795 37.95143 21.49869 19.71443

Industrials 64.43414 36.37636 23.81710 23.83260

Technology 103.52434 110.35931 54.64625 41.88988

Telecommunications

services

42.88189 42.26581 35.86557 37.04494

Utilities 106.76204 59.46691 34.12895 25.43286

during recession, but will not stop using daily tools or visiting doctors. With the

difference between sectors, it seems sector may affect credit rating. However, data

from more firms and more sectors are needed to better study the role played by

sectors.

Another interesting issue is that volatilities of CDS spreads may vary from sector

to sector. Sectors with higher volatilities may be more likely to have lower rating.

Since sample variances are sensitive to outliers, we apply wavelet transform to the

log returns of CDS spreads. Figure 7.6 shows the scatter plot of sample means and

standard deviations of the smoothed log returns for various sectors. The plot confirms

that some sectors indeed have higher volatility. Thus, industrial sectors could be used

to enhance credit rating. This issue deserves a careful investigation.

7.4 Concluding Remarks

Similar to stock and future prices, CDS spreads reflect the expectation of market

participants on credit risk of a firm. Thus, CDS spreads are informative for credit

rating. In this chapter, we proposed a market-based credit rating method based on

ARIMA-GARCH modeling and prediction of CDS spreads. The proposed method

is simple and widely applicable. Limited empirical analysis showed that ratings

obtained by the proposed method perform reasonably well. However, further study

is needed to improve the results of the proposed rating method. For example, the issue

mentioned in the comparison of the proposed method with S&P rating in Sect. 7.3.2

may be solved using additional information. In particular, information concerning

industrial sectors, macro-economic factors, and firm size could be helpful.

In the literature, Feng et al. (2008) and Amato and Furfine (2004) argue that there

is some effect of business cycle on credit ratings. It’s true that macroeconomic factors
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may affect systematic risk which in turn affect credit ratings. Yet business cycle is

still not fully understood or not widely accepted, see Summers (1998). One of such

examples is the famous equity premium puzzle in the standard RBC model. Finally,

Blume et al. (1998) and Bhojraj and Sengupta (2003) both mention the relationship

between credit rating and firm size; thus firm size may be useful in improving credit

rating. Intuitively, large firm is less likely to default, or even too big to fail. The issue

of firm size also deserves a careful study.
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Chapter 8

Using Public Information to Predict

Corporate Default Risk

C.N. Peng and J.L. Lin

Abstract Corporate defaults are often affected by many factors that are roughly

divided into the two types: internal factors and external factors. Internal factors

can be measured precisely with firm-specific financial statistics while external fac-

tors contain qualitative data, like related news. There are large amount of timely

information from news which affects the default probability of corporates. Efficient

extraction information contained in the news is the main focus of this study and we

propose to use empirical Bayes and Bayesian Networks to achieve this goal. First,

we retrieve both macroeconomic and firm-specific news published by major news-

papers in Taiwan. Then, word segmentation is applied, keywords are extracted and

then the news variables are computed. Instead of adding the news variables to the

logistic regression model, we convert them into prior distribution for the parameters

in the corporate default model. Finally, we compute the posterior distribution of the

model parameters to predict the corporate default. The estimation is performed using

the integrated nested Laplace approximations which, to our belief, is better than the

traditional Markov Chain Monte Carlo for our model. Empirical analysis using Tai-

wanese data finds that news has a significant impact on the corporate default rate

prediction. Adding the news variable does improve the forecast precision and prove

its usefulness.
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8.1 Introduction

Due to the rapid development of internet, we can get instant global economic news

on all the financial media around the clock. There are basically two kinds of news

based on its frequency and involved entity. One is regularly published government

economic data and forecast, and the other is occasional occurrence of corporate

litigation, financial earning information, personnel changes or industry dynamics.

News such as Taiwan HTC’s infringement cases sued by the US Apple, US Apple’s

announcement of its unexpected decrease of sales, or the talk of Morris Chang,

TSMC’s chairman, will have direct or indirect impacts on business, industry and

the overall economic environment. Extracting and interpreting these financial news

to forecast corporate default rates have been an important issue. However, since

news is mostly qualitative, and is often released irregularly, it is difficult to quantify

such information as variables to be included in the econometric models. In practice,

credit rating agencies such as S and P and Moody’s and other credit rating agencies

have taken into account non-quantitative factors to adjust their credit rating results

obtained from the statistical models.

Financial information can also be classified as qualitative and quantitative types.

News about European debt crisis is qualitative data while credit rating or economic

growth rate is quantitative data. Both types of data have significant impacts on corpo-

rate earnings and should be included in the corporate default prediction models. For

the quantitative data, one can directly feed them into statistical models for empirical

analysis. As for extracting information from qualitative data, it would be much more

convenient to perform the task using the Bayesian models, which combine prior dis-

tribution and likelihood function into posterior distribution. Qualitative information

is for prior distribution as data is for the likelihood function. In other words, tex-

tual news can be coerced into priori distribution. Yet, there is still one obstacle for

this implementation. In traditional Bayesian models, priori distribution is formulated

for the model parameters in likelihood functions or in regression models. While we

could easily make a statistical inference from the news about its impact on default

rate, its implication for models parameters is unclear. For example, the Euro debt

crisis will not only increase the potential default probability of the bank, but also

slowdown economic growth. Such information is difficult to be converted into priori

distribution of model parameters. Therefore, the main purpose of this paper is to

quantify financial news and embed it in a Bayesian framework to forecast corporate

default rates. The computation and simulation are performed using the Integrated

Nested Laplace Approximations (INLA) which is believed to be more efficient than

the popular Markov Chain Monte Carlo (MCMC) for our model. It is worth men-

tioning that our model could be further developed as a real-time and dynamic default

prediction model that is very useful for credit risk management.
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8.2 Literature Review

Credit rating reflects the soundness of the enterprise and related literatures are volu-

minous. We shall first examine the influences of credit rating by some major credit

rating agencies, followed by evaluating these credit ratings. Then, we discuss papers

on modeling corporate default probability and introduce information theory and its

application. Finally, we review models containing quantitative and qualitative vari-

ables.

Brooksaff et al. (2004) used the Standard & Poor and Fitch’s credit ratings to

assess their impacts on the global stock market. The empirical analysis confirmed

significant effects, especially when the credit rating are downward graded. Yet, it is

not the case for newly developing countries. Ferreira and Gama (2007) also found

a spillover effect on the stock markets of other countries when a country’s rating

is downward graded. Kim and Wu (2008) discover some impacts on credit markets

when credit rating agencies release long and short term ratings. Orth (2013) applied

Bayesian simulation approach to adjust the rating of sovereign debt securities and

corporate debt securities. There exist under-estimation of risk for Standard & Poor’s

credit rating, especially when the rating is downward graded. Literatures on modeling

corporate default probability are voluminous and can be roughly divided into two

categories: structural model and reduced-form model. Merton’s model as in Black and

Scholes (1973) and Merton (1974) is the representative structural model. Credit rating

agency, Moody, further revised it as Merton-KMV model. In this model, when the

market value of a corporate’s assets is lower than its liabilities, the company will soon

reach default. It uses European option pricing to calculate the default probability. This

model has been called firm-value based model. Vasicek (1977) and Shimko (1993)

use stochastic interest rates to evaluate the Bond prices. Longstaff and Schwartz

(1995) and Hui et al. (2003) relax part of the assumptions and modify Merton model.

However, in addition to the internal factors from within the corporate, there are

many external factors that could cause corporate default. The changing external

environment has gradually made structural model less popular. Reduced-form model,

also known as intensity model, mainly explores the linkage among corporate default

and the explanatory variables. It was first proposed by Jarrow and Turnbull (1995) and

a great deal of related models were developed, including multiple regression analysis

(West 1970), multivariate discriminant analysis and Z-score model (Altman 1968),

logistic model (Ohlson 1980), Probit model (Zmijewski 1984), order probability

model (Gentry et al. 1985; Blume et al. 1998; Guttler and Wahrenburg 2007), fixed

proportional hazards model (Cox 1972; Lane et al. 1986; Bharath and Shumway

2008), discrete-time hazard model (Shumway 2001; Chava and Jarrow 2004), credit

rating transition matrix (Lando and Skodeberg 2002) and dynamic default intensity

model (Duffie et al. 2007). It is worth noting that (Duffie et al. 2007) and its extended

models belong to the application of survival models, which use macroeconomic,

industry, firm-specific and other variables to estimate the default intensity.

Information arrives in many forms but all affect the corporates performance. While

information about corporate earnings and other general information are released on
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quarterly or monthly based, the daily stock market is often strongly influenced by

the news of the day so that the daily close price reflect daily market information

rather than corporate real operating conditions. Brown et al. (1988), Braun et al.

(1995), Pandher and Currie (2013), Coval and Shumway (2001) and others interpret

this phenomenon from different angles. Tetlock (2007) studied medias (Wall Street

Journal) impact on investors and found significant impacts of negative news on

stock trading volume. Tetlock et al. (2008) show that negative wording will affect

corporate revenue and can be used as an important predictor for the stock returns and

the corporate revenue. Antweiler and Frank (2004) studied the impact of the web

news on stock market. Yet, it is rather difficult to evaluate the composite impacts

of news from different sources as their basic characteristics might be different from

each other in a fundamental way.

For Bayesian credit risk literature, Czado (1994) derived Bayesian inference

of binary regression models with parametric link; Gössl (2005), and McNeil and

Wendin (2007) used Bayesian inference method to revise portfolio credit risk cal-

culation; Kiefer (2008, 2009, 2010), Jacobs and Kiefer (2010, 2011), Gössl (2005)

and McNeil and Wendin (2007) included outside experts opinions via Bayesian

framework to compute the posterior density of underlying parameters in credit risk

models. Orth (2013) studied the evaluation of sovereign and corporate credit risk, and

calculated credit rating transition matrix. Lock and Gelman (2010) transforms the

poll results into a priori distribution and then combine it with the general regression

model to predict the US presidential election results. Ben-Gal (2007) and Fernandez

and Salmeron (2008) show that Bayesian network model could be represented by

directed acyclic graph, which describes the relationship between two or more nodes,

and the node strength was expressed by probability. Yet, this approach requires clear

definitions of all nodes with real data that limited its applicability. Among few related

researches, Alexander (2000) used Bayesian belief networks (BBNs) to design work

insurance policy. Pourret et al. (2008a), mentioned that Denmark’s largest financial

services company (Nykredit) applied BBNs to predict the default probability of large

corporates. It is worth noting that Bayesian network model is mainly applied in com-

putational biology and bioinformatics gene regulatory networks, gene expression

analysis, document classification, information retrieval, decision support systems

and so on.

Furthermore, both Back et al. (2001) and Kloptchenko et al. (2004) combined

firm-specific variables with news processed using text mining methods to evaluate

the impact of the news on the corporation. However, this approach is limited to

specific event and is difficult to generalize to general cases. Only few studies combine

quantitative and qualitative data into a single model to predict corporate default rates

and Lu et al. (2012) is one exception. He retrieved keywords from news, classified

these keywords into crisis and non-crisis categories, use chi-square test to screen

proper keywords and then assign weights to construct Intensity of Default-Corpus

(ITDC) which latter is fed into a logistic regression model for corporate default

probability prediction. The empirical results showed that the closer to the crisis point

the better estimation of default probability.
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8.3 Econometric Models

We shall discuss our econometric models in two parts. The conventional corporate

default model is first introduced and then the news variables are added.

8.3.1 Logistic Models for Default Rate

Among existing models, we select Shumway (2001)’s model as our base model

because it is a dynamic discrete-time hazard model. Let T denote the time of default

and the firm starts at t = 1. Then, the survival probability at �t, is

ϕ(t|x) ≡ p(t ∈ [t, t + △t|T ≥ t, x]) (8.1)

=
1

1 + e−θ1g(t)−θ2X
(8.2)

The multi-period logistic model for empirical analysis. Equation (8.2) now

becomes

λ(t|x) ≡ ln(ϕ(t|x)) = θ1g(t) + θ2X (8.3)

where g(t) = ln(t) is a function of t, θ1, θ2 are estimated parameters, and x could

be firm-specific earnings or macroeconomic variables. By plugging-in estimated

parameters into the model, we get the strength of default, the higher the value the

higher the default probability. Note that model defined in (8.3) will be reduced to

standard logistic model if the term g(t)(= ln(t)) is removed.

8.3.2 Default Models Including News Information

In Bayesian models, past data can be used to specify priori distribution (Robbins

(1985), Brandel (2004)). Assume that p(x|θ) is the likelihood function of x, and θ is

the unknown parameter of interest. Let g(θ|η) be the prior distribution of θ, where η

is called hyper-parameters vector. Brandel (2004) applied Bayes theory and obtained

posterior distribution as

p(θ|x, η) =
p(x|θ)g(θ|η)

m(x|η)
=

p(x|θ)g(θ|η)
∫

p(x|θ)g(θ|η)dθ

where m(x|η) =
∫

p(x|θ)g(θ|η)dθ is the marginal distribution of x. Then the expec-

tation of posterior density is
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E[θ|x] =

∫

θp(x|θ)g(θ|η)dθ
∫

p(x|θ)g(θ|η)dθ
(8.4)

In (8.4), the estimation result will be affected by the hyper-parameters vector, η.

Estimation is straightforward if η is known but η is usually unknown in practice. In

turn, Marginal Maximum Likelihood Estimation (MMLE) can be applied and the

resulting marginal distribution m(x|η) of x is then used to estimate η. This process

is called empirical Bayes method.

Obviously, for default probability model, the dependent variable is 0 (event does

not occur) or 1 (event occurs), the estimated default probability is within (0,1] and

the explanatory variables are macroeconomic or firm-specific financial variables.

This explains why Kleinman (1973) Wilhelmsen et al. (2009), Kiefer (2009, 2010),

and Jacobs and Kiefer (2010, 2011) all choose Beta-Binomial model. Assume that

variable Yit represents the default status of i-th corporate at time t. Yit = 1 when it

defaults or Yit = 0 when it does not default. Yit has Bernoulli(πi) distribution, where

πi is default probability of corporate i. Assume the default status of corporate i is

independent over time. Let Xi be the default status up to time ni, we have the following

formula

Xi =

ni
∑

t=1

Yit ∼ B(ni,πi)

where Xi has binomial distribution and variable Xi will vary with πi. The maximum

likelihood function of corporate i with default probability at time ni is

p(Xi = xi|πi) = Cni

xi
π

xi

i (1 − πi)
ni−xi

Through dynamic default probability model, we can solve for πi. Assume πi has

Beta(r, s) distribution and is re-parameterized as Betarep(μ, M) where

μ =
γ

γ + s
, M = γ + s

Put (8.5) into Beta(μ, M), the joint probability density function is

g(� = π|μ, M) =
Ŵ(M)

Ŵ(Mμ)Ŵ(M(1 − μ))
πMμ−1(1 − π)M(1−μ)−1

Thus the marginal probability function is

m(X = x|μ, M) = Cn
x

Ŵ(M)

Ŵ(Mμ)Ŵ(M(1 − μ))

Ŵ(x + Mμ)Ŵ(n − x + M(1 − μ))

Ŵ(n + M)
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Finally, the posterior distribution is Beta(rEB, sEB) where

γEB = x + Mμ, SEB = n − x + M(1 − μ)

In the estimation process, the relationship of hyper-parameters requires simulation

estimation. While there exist a great of simulation estimation methods, Markov Chain

Monte Carlo (MCMC) or EM-algorithm are commonly used. This paper adopts

more efficient Integrated Nested Laplace Approximations (INLA). Wilhelmsen et al.

(2009) compared the difference between MCMC and INLA, and found that the

efficiency and accuracy of INLA are better than that of MCMC. See Rue et al.

(2009) for details.

8.3.3 Bayesian Network Model

Ben-Gal (2007) pointed out that the main structure of Bayesian network model is

non-circulate probability graphical model where there exist sequential causal rela-

tionships among various events. In this paper, we shall estimate λ(t|x) in the discrete-

time hazard model. As it is affected not only by firm-specific variables at time t, but

also by the news information at time t − 1. Hence, we specify the default probability

function as

f (Yt|Xi,t−1), i = 1, 2, ..., n

where Xi,t−1 is the news information factor at time t − 1. News information will be

retrieved, quantified and its probability distribution will be simulated. Finally, using

Bayesian network method, we can get revised default probability as

f (Yt, Xi,t−1), i = 1, 2, ..., n

From above, assume there are two news X1 and X2 then

f (Y , X1, X2) = f (Y |X1, X2)f (X2|X1)f (X1)

where f (Y |X1, X2) is the default probability from the corporate default model, and

f (X2|X1) is mutual impact between news events. This, in principle, can be used to

estimate the impact of sequent news events on default probability but it is difficult

to implement in practice. Thus, we follow Fernandez and Salmeron (2008) and Rij-

men (2008) and apply regression analysis. Since Bayesian network is non-circulate

directed, each news event can be treated as an explanatory variable, and the depen-

dent variable is the corporate default variable. Under multiple news events, we need

to consider whether they are related with each other. Its mathematical formula is

f (Y |X) = αX + ε
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were Y represent default of the corporate, X is news event and ǫ is random error.

Obviously, we have

f (Y |X) =
f (Y , X)

f (X)
= f (X|Y)

f (Y)

f (X)

and

f (X|Y) ∝ f (Y)f (X|Y)

It is called Naive Bayes (NB) when each news event is independent and Tree Aug-

mented Naive Bayes (TAN) when news are dependent. Rijmen (2008) adopts logistic

regression in Bayesian Network model where the weight of each segmented word is

estimated with the logistic regression model. Wilhelmsen et al. (2009) assumed the

prior distribution of logistic regression coefficients is

βj ∼ π(βj|θj), j = 0, 1, ..., M

where π(·|θ) denotes all possible distributional function, and θj is a scalar or vector

parameter. In this paper, θj is assumed as a scalar from news information, we obtain

posterior distribution as

π(β, θ|y) =
π(β, θ, y)

π(y)
∝ π(y|β, θ)π(β|θ)π(θ) (8.5)

=
∏

i

π(yi|β, θ)π(β|θ)π(θ) (8.6)

Solved by INLA, we obtain π(β, θ|y) where news information is included.

Rue et al. (2009) derive the test for parameters. Let y = (y1, y2, · · · , yn) be the

observed variable, its probability function be π(β|θ), and the model for unknown

parameter β be π(β|θ), and θ is hyper-parameter. π(θ) is distribution function of

hyper-parameter, and through Bayesian theory we get marginal posterior distribution

as

π(βi|y) =

∫

θ

π(βi|θ, y)π(θ|y)dθ (8.7)

π(θj|y) =

∫

π(θ|y)dθ−j (8.8)

Through INLA, we get the approximation of marginal posterior distribution as

π̃(βi|y) =

∫

θ

π̃(βi|θ, y)π̃(θ|y)dθ (8.9)
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π̃(θj|y) =

∫

π̃(θ|y)dθ−j (8.10)

where
∫

π(θ|y)dθ−j represents integration over all but the j-th parameter. In other

words, to obtain the estimated value of the parameters, we have to integrate over all

hyper-parameters. As the parameter vector θ is multi-dimensional, we must use the

Laplace estimate. In order to improve accuracy, latent Gaussian models are applied.

To obtain the estimation of π̃(βi|y), we need to get an approximation of π̃(βi|θ, y)

and π̃(θ|y), which are assumed as Gaussian distribution. We use Kullback–Leibler

Divergence (KLD) test which is defined as below:

DKL(P||Q) =

∫ ∞

−∞

ln(
p(x)

q(x)
)p(x)dx

DKL(P||Q) =
∑

x

ln(
p(x)

q(x)
)p(x)

where P, Q are respective two cumulative probability distribution for continuous and

discrete random variables. Let Q be normal distribution, when DK L(P||Q) ≈ 0, P is

also normally distributed.

For model selection, we shall use two methods: in-sample Receiver Operating

Characteristic Curve (ROC) and out-of-sample forecasting error (Lin and Tsay 2007).

Altman and Bland (1994) proposed ROC as a method of diagnostic test, which is

widely used by biometrics. Within a 2 × 2 table, P denotes positive and N negative.

Diag P N Total

Truth

P TP FN

N FP TN

Total Nobs

The True Positive(TP) and True Negative (TN) are the cells for the right diagnostics.

Let Nobs denote total number of samples, then accuracy ratio, sensitivity and speci-

ficity are respectively defined as (TP+TN)/Nobs and TP/(TP+FN). ROC is based

upon sensitivity and specificity, and can be used for model comparison.

As for out of sample forecasting error, we can calculate its Root Mean Square of

Error (RMSE)

RMSEt =

√

√

√

√

T
∑

i=t+1

(ŷi − yi)
2

ni

To summarize, these news frequencies are used to obtain the prior distribution of the

regression parameters β in Shumways model.
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8.4 Extracting News Information

Chinese characters can be divided into three types: classical, vernacular and other

dialects. Their usages and the structures are all different from each other. Vernacular

is currently used, which might vary due to the geographical environment and social

backgrounds, but in general follows certain syntax. Tsay (2008) pointed out that a

sentence is constituted by two basic components, subject and predicate. Subject is

the major part of the sentence, either the perpetrators of the action, or the objects

being interpreted, clarified or depicted. The predicate is the statement to clarify

the subject. In this paper, news from various media also follow a set of rules. For

example, editorial manual of Central News Agency depicts the main structure and

term usage. We further classify economic news in Taiwan into two categories. One

is economic news containing economic data, business cycle indicators, or economic

policy announcement released by the government official or agencies, which does

not make judgment of any corporate. The other one is public talks or comments on

specific corporate. In addition to Taiwan’s local news, foreign financial news also

has a considerable impact. We must distinguish their impacts.

8.4.1 News Keywords

Keyword is set in accordance with the commonly used terms and categorized by

subject, verb and adjective. Six main structures of the subject are set including raw

materials, European debt crisis, people and institutions, economic data release, as

well as business and policy agreements. Within each main structure, at least eight

keywords are selected, which can be different words with same meaning. The pred-

icate is mainly verbs, such as recovery, recess, rise, fall, up, down, strength and the

like. Default keywords defined by Taiwan Economic Journal (TEJ) are also included.

There are 10 categories: bankruptcies, restructuring, bounced checks, bail out, take

over, CPAs doubt on continuous operation, net worth is negative, unlist, tight budget,

negative worth, and shut down. Finally, these keywords are classified as positive,

neutral and negative.

8.4.2 Keyword Conversion

Segmented keywords from all news items (documents) are compiled into the

document-term matrix where columns are news items, and rows are keywords. For

each cell, 0 and 1 indicate if there is such keyword. For each keyword, summing over

all news items during any specific quarter will produce frequency of keywords. This

process is repeated separately for positive and negative keywords and their ratios are

then computed.
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8.5 Empirical Analysis and Results

This paper uses quarterly firm-specific data of all listed companies in Taiwan from

2000 to 2012. The data is taken from TEJ, excluding incomplete data entries, financial

firms and news media corporations. There are 908 corporates where 805 are still listed

at the end of the sample period and 103 are unlisted. As for news, there are mainly

two sources: newspaper and networks news. Yet, as the latter is only available for

one month after posting, we only use newspapers news. The major four newspapers

in Taiwan are China Times, United Daily News, Free News and Apple Daily. The

data is collected daily from the first quarter of 2008 to the fourth quarter of 2012,

amounting to about 270,000 news items.

8.5.1 Empirical Models

This empirical analysis is illustrated in two parts. First, we follow previous research

in selecting firm-specific quantitative variables under the constraint that the resulting

ROC curve is above 90%. Second, as for news variables, we employ empirical Bayes

and Bayesian networks to convert as quantitative variables and then feed them into

the base default model as is introduced previously. We compare the performance of

the following six models:

1. Model I: Earnings model

This is the conventional default model only based upon firm-specific financial

variables and ln(t). Standard logistic regression estimation will suffice.

2. Model II: Earnings-macroeconomic model

In additional to firm-specific financial variables and ln(t), macroeconomic vari-

ables are also included in the model for default prediction. Again, the model is

estimated using standard logistic regression.

3. Model III: Bayesian earnings model

Earnings models are formulated under Bayesian framework and is used to predict

corporate defaults. Empirical Bayes is used for model estimation. To be specific,

default variable is first regressed against firm-specific financial variables and

the estimation results are then converted into prior distribution of the associated

parameters using INLA algorithm. Finally, the posterior distribution are derived

with prior and likelihood function.

4. Model IV: Bayesian earnings-macroeconomic model

Both firm-specific financial variables and macroeconomic variables are included

in the model under Bayesian framework. Estimation procedure is the same as

Bayesian earnings model except that macroeconomic variables are added.

5. Model V: Bayesian news-earnings model

News variables are added to the Bayesian earning model via empirical Bayes

method and INLA. To be specific, firm-specific news are classified as good

news, and bad news and their relative frequencies to all news are computed.
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For macroeconomic news, only those containing the five most and least fre-

quent keywords, such as price, monetary policy are counted. These news are

further classified as good news or bad news. Next, regress the firm default vari-

able against ln(t), firm-specific good news and firm-specific bad news for each

firm. Then, for each ten macroeconomic key variables, regress firm default vari-

able against macroeconomic good news and bad news for each firm. Summing

the predicted probability distribution obtained from five most frequent keywords

and firm-specific regressions give rise to model 5(L). Similarly, summing the

predicted probability distribution obtained from five least frequent keywords and

firm-specific regressions gives rise to model 5(S). It is worth noting that the idea

of Bayesian network model is used in this step. Now, we could combine news

effects with Shumway’s model with firm-specific variable using INLA.

6. Model VI: Bayesian news-earning-macroeconomic model

News variables are added to the Bayesian earnings-macroeconomic model via

empirical Bayes method and INLA. Computation procedure is the same as

Bayesian news-earnings model except for the added macroeconomic variables.

8.5.2 Variable Selection

In the discrete-time hazard model, explanatory variables must be included to predict

corporate default probability. Altman (1968), Ohlson (1980) and Zmijewski (1984)

used three to nine financial ratio variables. Shumway (2001) included two financial

ratios and three market-driven variables. Chava and Jarrow (2004) added industrial

variables to those in Altman (1968) and Zmijewski (1984). Lee and Yeh (2004)

focused on the relationship between corporate governance and financial distress.

Duffie et al. (2007) added macroeconomic variables to the dynamic intensity model.

Campbell et al. (2008) added two firm-specific financial ratios and stock return to the

list of variables compiled by Shumway. Standard & Poor consider eighteen variables

on liquidity, terms of profitability, capital structure, cash flow and ability to repay

interest etc. in corporate’s credit rating.

After taking all these literatures into consideration, we select seven variables:

assets-liabilities ratio, quick ratio, ratio of retained earnings to total assets, earn-

ings per share, operating expense ratio, unemployment rate, and TAIEX (Taiwan

Stock Exchange Capitalization Weighted Stock Index) return. The definitions of the

selected variables are reported in Table 8.1. In additional to the variable definition

and type of variables, their expected sings are also listed. Table 8.2 summarizes basic

statistics of the variables. Except for unemployment rate and the stock market return,

extremely large skewness and kurtosis of firm-specific financial variables indicate

obvious departure from normal distribution assumption. Table 8.3 reports the para-

meter estimates for Model I and II. As can be seen from the table, except for the ratio

of retained earnings to total assets, all variables are significant and their signs are

consistent with prediction from finance theory. The Bayesian estimates for Model III
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Table 8.1 Variable definitions

Category Name Variable definition Sign

Financial structure Asset-liability ratio Total asset/total liability Negative

Solvency Quick ratio (Liquid

asset-inventory)/liquid

liability

Negative

Profitability Ratio of retained earnings to

total assets

Retained earning/total assets Negative

Earning per share Earning/number of shares Negative

Operating capacity Operating expense ratio Operating expense/net

revenue

Positive

Macro variables Unemployment rate Positive

Stock market return Negative

Table 8.2 Summary statistics for explanatory variables

Variable Mean Std Median Skewness Kurtosis

Assets-liabilities ratio 3.52 5.11 2.61 25.81 1083.35

Quick ratio 1.65 4.08 1.06 26.86 1139.92

Retained earnings to total

assets ratio

0.06 0.66 0.10 −49.58 3273.97

Earnings per share 1.15 3.56 0.66 54.42 5886.05

Operating expense ratio 0.26 6.49 0.10 110.16 14210.83

Unemployment rate 4.48 0.72 4.32 0.19 2.77

Stock market return 3.80 26.47 6.89 0.13 3.22

Table 8.3 Parameter estimates for Model I and II. Signif. codes: p < 0.001 ****; p < 0.01 ***; p

< 0.05 **; p < 0.1 *

Model I Model II

Est. t-stat Est. t-stat

Intercept −0.9814 −3.306**** −2.8829 −6.067****

Time trend −0.2667 −4.151**** −0.4406 −5.145****

Assets-liabilities ratio −1.0066 −6.734**** −1.0574 −6.427****

Quick ratio −3.1559 −11.742**** −3.0579 −10.585****

Retained earnings to total

assets ratio

0.0776 1.495 0.0767 1.470

Earnings per share −0.1998 −9.201**** −0.1974 −8.292****

Operating expense ratio 0.0085 3.188*** 0.0080 2.457**

Unemployment rate 0.5361 5.726****

Stock market return −0.0041 −1.668*
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Table 8.5 Estimation results of logistic model with news variables Signif. codes: p < 0.001****;

p < 0.01***; p < 0.05**; p < 0.1*

Pooled news Category news

est. t-stat est. t-stat

Intercept 2.19453 0.464 0.8633 0.164

Time trend −2.18977 −1.711 −1.9608 −1.387

Pooled news −0.01627 −1.247

Positive news −1.688 −2.234**

Negative news 1.6849 2.627***

and IV are summarized in Table 8.4. In additional to mean, standard deviation, 2.50

and 97.5% quantiles, we also compute Kullback-Leibler Divergence (KLD) statistics

which measures divergence from normal distribution. KLD values of all parameters

are very small, indicating little divergence of the posterior distribution from normal

distribution. Furthermore, we also find that except for the ratio of retained earnings

to total assets and TAIEX return, the 95% confidence interval of all parameters do

not include 0.

8.5.3 Adding News Variables

For the purpose of comparison, we perform a logistic regression of corporate default

indicator directly against news variables and put the results in Table 8.5. On the left

panel of the table all news are pooled together while on the right panel positive and

negative news are separated. As is expected, pooled news variable is not significant

while negative news has stronger effect than positive news on corporate default rate

though both estimates are significant. Similar findings were found in Lu et al. (2012).

Now we turn to models V and VI where news variables are added to Shumway’s

model on the Bayesian framework. Empirical results are reported in Table 8.6. A

detailed comparison of estimation results, we make the following observations. First,

estimation results of Shumway model without news variables are similar whether it

is estimated within classical logistic model or empirical Bayesian model. Second,

the results of Model V and VI are similar to those of models III and IV that except for

the ratio of retained earnings to total assets and TAIEX return, the 95% confidence

interval of all parameters do not include 0 and all KLDs are close to 0. Third, adding

news variables to the Bayesian model would change the parameter estimates a great

deal. For example, the impacts on quick ratio double in Models V and VI. Fourth, as

is in Fig. 8.1 where RMSE for out-of-sample forecast over time are graphed, model

II with macroeconomic variables consistently outperform the base model I with only

firm-specific variable. Fifth, as is shown in Fig. 8.2, ROC curves of all six models

are all above 90%, but the difference is small among models.
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Fig. 8.1 RMSEs for Model I

and II

Figure 8.3 is the time series graph of average corporate default rate where annual

default rates are put in the left panel whereas quarterly default rates are put in the

right panel. The upper panel are based on ratio of number of unlisting stocks to total

stocks while the bottom panel is computed following the definition of default in TEJ.

As is obvious from the figures, the peaks and troughs of default rate defined by TEJ

leads those defined by unlisting.

Figure 8.4 displays the average corporate default intensity of all six models which

is the simple average of each corporate’s default intensity in each model respectively.

Comparing the resulting intensity figures of paired models will highlight their differ-

ences. Models I, III and V do not contain macroeconomic variables and are put in left

panel of the figure while Model II, IV and VI include macroeconomic variables and

are put in the right panel. From the figure, we make the following findings. First, the

estimated default intensity of empirical Bayesian model (model III/IV) are smaller

than those from Shumway model (model I/II). Both estimates differ from each other

by a big margin from 2002 to 2008 when the subprime mortgage crisis broke out.

Yet both estimates converge after 2008 crisis. The patterns are similar for both paired

models with and without macroeconomic variables. Second, as news variables are

collected from Jan 1, 2008 to Dec 31, 2012, comparing estimation results of two sub-

periods with and without news variable would reveal the impacts of new variables.

Considering that each keyword might have different impact on corporates default

probability, we add one more step. We first perform a logistic regression again each

macroeconomic keyword, compute the squared root of residual sum of squares, RSS,

and then sort them in ascending order. Next, we select the keywords with the 5 largest
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Fig. 8.2 ROC curves for all six models
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Fig. 8.3 Time series plot of average default rate

RSSs (denoted as L-keywords) and keywords with 5 smallest RSSs (denoted as

S-keywords). These L- and S-keywords are then respectively combined with key-

words for each corporate, fed into the Bayesian models and estimated using INLA the

algorithm. The results are put in the middle and bottom panels of Fig. 8.4. From the

figure, we observe that without macroeconomic variables, adding S-keywords pro-

duces a sharp increase of corporate default intensity in early 2008 while the impact

of S-keyword are much smaller. The situation is reversed when macroeconomic vari-

ables are included in the model where L-keywords has a stronger impact on default

intensity than S-keywords. It deserves further investigation to explain this phenom-

enon. Finally, the ROC curves for all six models are reported in Fig. 8.2. They are all

above 90% but adding news variables does not significantly increase the ROC curve.
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Fig. 8.4 Time series plot of default intensity of all six models

8.6 Conclusions

While corporates’ financial reports are released on a quarterly basis, daily economic

or financial news could provide timely and useful information about the corporate

default probability. This paper provides a framework to extract information from

text-based news to improve corporate default prediction. Instead of converting news

as a new variable in a standard logistic regression model, we employ the complicated

INLA method to transform news into prior information of corporate default and then

estimate its impact within a Bayesian model. The conversion is completed using the
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INLA. Empirical analysis confirms usefulness of the proposed method though there

are rooms for improvement. For example, each keyword might have different weight

and the timing of the news within each quarter might be important. These issues

deserve further investigation in the future.
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Chapter 9

Stress Testing in Credit Portfolio Models

M. Kalkbrener and L. Overbeck

Abstract As, in light of the recent financial crises, stress tests have become an

integral part of risk management and banking supervision, the analysis and under-

standing of risk model behaviour under stress has become ever more important. In

this paper, we present a general approach to implementing stress scenarios in a multi-

factor credit portfolio model and analyse asset correlations, default probabilities and

default correlations under stress. We use our results to study the implications for

credit reserves and capital requirements and illustrate the proposed methodology by

stressing a large investment banking portfolio. Although our stress testing approach

is developed in a particular credit portfolio model, the main concept - stressing risk

factors through a truncation of their distributions - is independent of the model spec-

ification and can be applied to other risk types as well.

9.1 Introduction

Stress testing has been adopted as a generic term describing various techniques used

by financial firms to analyze their potential vulnerability to extreme yet plausible

events, see para 718 in Basel Committee on Banking Supervision (2006) for spe-

cific requirements on banks’ stress testing programs. Stress scenarios have long been

used in risk management to supplement risk measures like value-at-risk (VaR) and

economic capital (EC), e.g. Kupiec (1998) and Berkowitz (2000), but stress testing

has gained new prominence in the aftermath of the subprime crisis and the European

sovereign debt crisis. In particular, it has become an integral part of banking super-

vision, which is reflected in regulatory stress testing programs such as the annual

Comprehensive Capital Assessment Review (CCAR) performed by the FED since
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2010 (Board of Governors of the Federal Reserve (2012)) and the EU-Wide Stress

Tests, see European Banking Authority (2011). Principles of sound stress testing

practices have been laid down by the Basel Committee on Banking Supervision

(2009), analysis and surveys of macroeconomic stress testing can be found in Čihák

(2007), Alfaro and Drehmann (2009), Drehmann (2009), Quagliariello (2009) and

Borio et al. (2012).

An important challenge in designing effective stress tests is the selection of sce-

narios that are both severe and plausible. One approach frequently used by risk

managers is the application of historical scenarios such as the 1987 stock market

crash or the subprime crisis. By their very nature, historical scenarios are plausible

and provide useful information on the sensitivity of a portfolio to specific market

shocks but they restrict attention to prior stress episodes. Hypothetical scenarios, in

contrast, are not constrained to replicate specific past incidents and can therefore

cover a broader spectrum of potential risks. However, depending on the choice of

the hypothetical scenarios, stress test results might misrepresent risks either because

the most dangerous scenarios are not considered or because the selected scenarios

are too implausible. In order to overcome this problem, systematic approaches to

scenario selection have been investigated for more than 15 years, e.g. Studer (1999).

More recent work on that subject includes Breuer et al. (2009), Breuer and Csiszár

(2013), Flood and Korenko (2015) and Glasserman et al. (2015).

In this paper, we present an alternative approach to the specification of stress

scenarios, which has initially been introduced in Bonti et al. (2006) for analyzing

credit concentrations. Duellmann and Erdelmeier (2009) use the same methodology

for stressing credit portfolios of German banks. In this approach, statistical EC or

VaR models serve as quantitative framework for the specification of stress scenarios.

More precisely, stress scenarios are defined through constraints on the risk factors of

the model. These constraints are then used to truncate the distribution of the stressed

risk factors or - in other words - restrict the state space of the model, where each state

represents values of the risk factors. The response of the peripheral (or unstressed) risk

factors is specified by the dependence structure of the model. As an example, consider

an economic downturn in the automotive sector. In a structural credit portfolio model

with industry and country factors this scenario can be implemented by truncating

the systematic risk factor for the automotive industry. The severity of the downturn

scenario is reflected through the truncation threshold, so that a lower threshold implies

more severe stress. Since the automotive industry is positively correlated to most

industry and country factors non-automotive exposures are affected as well.

The specification of stress scenarios through constraints on risk factors of VaR or

EC models has a number of advantages:

1. Stress scenarios are implemented in a way that is consistent with the existing

quantitative framework. This implies that the relationships between (unrestricted)

risk factors remain intact and the experience gained in the day-to-day use of the

model can be utilized in the interpretation of stress testing results. It has to be ana-

lyzed, however, whether historical correlation patterns, which are typically used

for calibrating (unstressed) risk capital models, provide an appropriate depen-
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dence structure for stress testing, see Sect. 9.4 for a sensitivity analysis of model

correlations under stress.

2. In a given stress scenario, risk factors are not set to deterministic values but remain

stochastic variables, i.e., stressed as well as unstressed factors follow a joint

distribution conditional on the truncation thresholds that define the stress scenario.

This feature distinguishes our approach from standard stress tests, which are

typically based on deterministic stress scenarios. As a consequence, stressed risk

measures, e.g. expected loss, value-at-risk or economic capital, can be calculated

in each stress scenario.

3. The probability of each stress scenario, e.g. the probability that the risk factors

satisfy all the constraints under non-stress conditions, can be easily calculated in

the statistical model. This is a good indicator for the severity of a stress scenario.

Our stress testing methodology is developed in a multi-factor credit portfolio

model. We provide details on the implementation of stress scenarios and discuss

practical issues such as the calculation of truncation thresholds in multi-factor stress

scenarios. Another objective of this paper is to review recent results on stressed asset

correlations, default probabilities and default correlations presented in Kalkbrener

and Packham (2015a) and Packham et al. (2014). In these papers, the analysis is

performed in a factor model that follows a normal variance mixture distribution,

which covers a wide range of light-tailed to heavy-tailed distributions. Aside from

analysing the behaviour under stress for given stress levels or stress probabilities, the

asymptotic behaviour, that is, the behaviour under stress as the stress level becomes

arbitrarily high, is investigated. Contrary to popular belief, it is shown that the impact

of stress on the asymptotic behaviour is greater in light-tailed models than in heavy-

tailed models. More specifically,

• asset correlations under stress are less sensitive for heavy-tailed models than light-

tailed models;

• default correlations under stress converge to 0 for light-tailed models and to a

number strictly greater than 0 for heavy-tailed models;

• default probabilities converge to 1 for light-tailed models and to a number strictly

smaller than 1 for heavy-tailed models.

However, the asymptotic behaviour of stresses PDs is not representative for ordinary

stress tests: only for rather extreme stress severities, stressed PD’s become higher in

light-tailed than in heavy-tailed models. Finally, these results are used to study the

implications for risk measures, credit reserves and capital requirements under stress.

The paper is structured in the following way. The second section introduces the

quantitative framework we will work in. The third section describes our approach to

implementing stress scenarios in a multi-factor credit portfolio model. In addition,

results from stressing a sample portfolio are presented. In Sect. 9.4, the impact of

stress on asset correlations, default probabilities and default correlations is analyzed.

Section 9.5 concludes.
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9.2 Quantitative Framework for Stress Testing

The objective of this section is the introduction of a class of multi-factor credit

portfolio models that serve as the formal framework for the implementation of stress

scenarios.

In a typical bank, the economic as well as regulatory capital charge for credit risk

far outweighs capital for any other risk class. Key drivers of credit risk capital are

concentrations in a bank’s credit portfolio, either caused by material concentrations of

exposure to individual names or large exposures to a single sector or to several highly

correlated sectors. As a consequence, the stress testing methodology for credit risk

has to be implemented in a credit portfolio model that provides sufficient flexibility

for modeling risk concentrations.

The IRB approach in Basel Committee on Banking Supervision (2006) does not

provide an appropriate quantitative framework. It is based on a credit portfolio model

that was originally designed to produce portfolio-invariant capital charges. However,

it is only applicable under the assumptions that (cf. Gordy 2003)

1. bank portfolios are perfectly fine-grained and

2. there is only a single source of systematic risk.

The simplicity of the model ensures its analytical tractability. However, it makes it

impossible to model risk concentrations in a reasonable way.

In order to develop meaningful stress tests, we need to generalize the IRB approach

to a multi-factor credit portfolio model that takes into account individual exposures

and has a richer correlation structure. In this paper, we use a structural model (Merton

1974), which links the default of a firm to the relationship between its assets and the

liabilities that it faces at the end of a given time period [0, T ] 1.

More generally, in a structural credit portfolio model the j-th obligor defaults if

its ability-to-pay variable A j falls below a default threshold c j : the default event at

time T is defined as {A j ≤ c j } ⊆ �, where A j is a real-valued random variable on

the probability space (�,A, P) and c j ∈ R. We denote the default indicator 1{A j ≤c j }
of the j-th obligor and its default probability P({A j ≤ c j }) by I j and p j respectively.

The portfolio loss variable is defined by

L :=
n

∑

j=1

l j · I j , (9.1)

where n denotes the number of obligors and l j is the loss-at-default of the j-th

obligor. In order to reflect risk concentrations, a joint distribution of the A j has to be

specified that captures the dependence between defaults of different obligors. This is

done via the introduction of a factor model consisting of systematic and idiosyncratic

factors. More precisely, each ability-to-pay variable A j is decomposed into a sum of

systematic factors �1, . . . , �m and an idiosyncratic [or specific] factor ε j , that is

1A survey on credit portfolio modeling can be found in Bluhm et al. 2002 and McNeil et al. 2005
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A j =
√

R2
j

m
∑

i=1

w j i�i +
√

1 − R2
j ε j . (9.2)

It is usually assumed that the vector of systematic factors � = (�1, . . . , �m) fol-

lows an m-dimensional normal distribution with mean 0 = (0, . . . , 0) and covariance

matrix � = (�kl). The systematic weights w j1, . . . , w jm ∈ R determine the impact

of each systematic factor on the ability-to-pay variable A j . The systematic weights

are scaled such that the systematic component

φ j :=
m

∑

i=1

w j i�i (9.3)

is a standardized normally distributed variable, i.e., φ j has mean 0 and variance 1.

The idiosyncratic factors ε1, . . . , εn are standardized normally distributed variables,

they are independent of each other as well as independent of the systematic factors.

Each R2
j is an element of the unit interval [0, 1]. It determines the impact of the

systematic component on A j and therefore the correlation between A j and φ j : it

immediately follows from (9.2) that

R2
j = Corr(A j ,φ j )

2. (9.4)

In order to quantify portfolio risk, measures of risk are applied to the portfolio loss

distribution (9.1). The most widely used risk measures in banking are value-at-risk

and expected shortfall: value-at-risk VaRα(L) of L at level α ∈ (0, 1) is simply an

α-quantile of L whereas expected shortfall of L at level α is defined by

ESα(L) := (1 − α)−1

∫ 1

α

VaRu(L)du.

For most practical applications the average of all losses above the α-quantile is a

good approximation of ESα(L): for c := VaRα(L) we have

ESα(L) ≈ E(L|L > c) = (1 − α)−1

∫

L · 1{L>c} dP.

These risk measures are used to determine the economic capital, which is designed

to state with a high degree of certainty the amount of capital needed to absorb unex-

pected losses. Economic capital EC(L) is usually defined as value-at-risk VaRα(L)

at a high level α, e.g., α = 0.9998, minus the expected loss E(L) of L:

EC(L) := VaRα(L) − E(L),

where the subtraction of the expected loss reflects the fact that only unexpected losses

are covered by economic capital.
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9.2.1 Definition of Asset and Default Correlations

The critical quantities entering the risk measures defined above are the default prob-

abilities and the risk concentrations of the default indicators I j , either specified by

default or asset correlations. In this subsection, we provide a formal definition of

these quantities, an analysis of default or asset correlations under stress is performed

in Sect. 9.4.

The default or event correlation ρD
i j of obligors i and j , with i �= j , is defined as

the correlation Corr(Ii , I j ) of the corresponding default indicators. Because

Var(I j ) = E(I 2
j ) − p2

j = p j − p2
j ,

the default correlation equals

ρD
i j = Corr(Ii , I j ) =

E(Ii I j ) − pi p j
√

(pi − p2
i )(p j − p2

j )
. (9.5)

The indicator variables I j are defined in terms of ability-to-pay variables A j ,

which are typically interpreted as log-returns of asset value processes. The correlation

Corr(Ai , A j ) is therefore called the asset correlation ρA
i j of obligors i �= j . As an

immediate consequence of (9.2), the correlation as well as the covariance of the

ability-to-pay variables of the counterparties i and j are given by

Corr(Ai , A j ) = Cov(Ai , A j ) =
√

R2
i

√

R2
j

m
∑

k,l=1

ωikω jlCov(ψk,ψl). (9.6)

There exists an obvious link between default and asset correlations. For given

default probabilities, the default correlation ρD
i j is determined by E(Ii I j ) according

to (9.5), and

E(Ii I j ) = P(Ai ≤ ci , A j ≤ c j ) =
∫ ci

−∞

∫ c j

−∞
fi j (u, v)dudv,

where fi j (u, v) is the 2-dimensional joint density function of Ai and A j . Hence,

default correlations depend on the joint distribution of Ai and A j . If (Ai , A j ) is

bivariate normal the correlation of Ai and A j determines the copula of their joint

distribution and hence the default correlation:

E(Ii I j ) =
1

2π

√

1 − ρA
i j

2

∫ ci

−∞

∫ c j

−∞
exp(−

1

2(1 − ρA
i j

2
)
(u2 − 2ρA

i j uv + v2))dudv.

(9.7)

Note, however, that for general ability-to-pay variables outside the multivariate nor-

mal class, the asset correlations do not fully determine the default correlations.
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9.3 Factor Stress Methodology

In this section, we describe each of the steps of the stress testing process:

1. Specification of an economic stress scenario or scenario based on the character-

istics of the portfolio

2. Translation of the scenario into constraints on the systematic factors of the credit

portfolio model

3. Quantification of the impact of the stress scenario by calculating the conditional

expected loss and other statistics of the portfolio

9.3.1 Specification of Stress Scenarios

The following classification should serve as a rough guide and distinguish different

types of stress scenarios.

1. Macroeconomic scenarios. A macroeconomic scenario usually requires the use of

a macroeconomic model. It specifies an exogenous shock to the whole economy

that is propagated over time and may impact the banking system in various ways.

This type of stress scenario is used by financial regulators or central banks in order

to gain an understanding of the resilience of financial markets or the banking

system as a whole.

2. Market shocks. These scenarios specify shocks to financial markets. This category

also includes certain shocks of a “systemic” nature affecting credit risk (such as

a sudden flight to liquidity), or sectoral shocks, for instance the deterioration

in credit spreads in the TMT (Technology Media-Telecommunications) sector.

Historical scenarios are frequently used for this type of shocks in order to increase

the plausibility of these stress scenarios.

3. Portfolio specific worst case scenarios. The objective of this worst case analysis is

to identify scenarios that are most adverse for a given portfolio. The specification

of worst case scenarios can either be based on expert judgement or quantitative

techniques.

These scenario types serve different purposes. Economic stress scenarios and market

shocks are usually specified by risk management. The objective is to quantify the

impact of a plausible economic downturn or a market shock on a credit portfolio.

The aggregated loss of portfolio specific worst case scenarios, on the other hand,

serves more as a benchmark to create some awareness of the current market situation.

The construction of these scenarios is driven by portfolio characteristics instead of

economic considerations.

Regardless of the motivation for considering a particular scenario, there exist a

number of criteria that characterize useful stress scenarios:
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1. Plausible. Stress scenarios must be realistic, e.g. have a certain probability of

actually occurring. Risk management will not take any actions based on scenarios

that are regarded as implausible.

2. Consistent. One objective is to implement stress scenarios in a way that is con-

sistent with the existing quantitative framework. This has the advantage that the

relationships between risk factors remain intact and the experience gained in the

day-to-day use of the model can be utilized in the interpretation of stress testing

results.

3. Adapted. Stress tests should include scenarios that are specifically designed for

the portfolio at hand. They should reflect certain portfolio characteristics and

particular concerns in order to give a complete picture of the risks inherent in the

portfolio.

4. Reportable. Stress scenarios should provide useful information for risk manage-

ment purposes, which can be translated into concrete actions. For reporting pur-

poses, it is crucial that the stress scenario is characterized by a clearly identifiable

set of stressed risk factors, sometimes called the “core” factors. The remaining

“peripheral” factors should then move in a consistent way with those “core” fac-

tors.

When designing specific stress scenarios, we usually focus on a small number of

directly stressed factors, e.g. those factors that correspond to the sectors of interest.

In addition, a small number of stressed factors makes it easier to transform the stress

results into concrete management actions. The response of the other risk factors is

specified by the dependence structure of the model. This approach is also a superior

way to identify risk concentrations compared to just aggregating exposures per sector,

because there it can happen that concentrations in distinct but highly correlated

sectors remain undetected.

9.3.2 Implementation of Stress Scenarios in Credit Portfolio

Models

In order to translate a given stress scenario into model constraints, a precise meaning

has to be given to the systematic factors of the portfolio model. Recall that each

ability-to-pay variable

A j =
√

R2
j

m
∑

i=1

w j i�i +
√

1 − R2
j ε j

is a weighted sum of m systematic factors �1, . . . , �m and one specific factor ε j .

The systematic factors often correspond either to countries (or geographic regions)

and industries. Equity data is frequently used to construct time-series for the system-

atic factors. Statistical techniques are then applied to these time-series to derive the

joint distribution of the systematic factors. The systematic weights w j i are chosen
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according to the relative importance of the corresponding factors for the given coun-

terparty. They are either based on economic information or calculated via statistical

techniques such as linear regression.

The economic interpretation of the systematic factors is essential for implement-

ing stress scenarios in the model. The actual translation of a scenario into model

constraints is done in two steps:

1. Identification of the appropriate risk factors based on their economic interpretation

2. Truncation of their distributions by specifying upper bounds that determine the

severity of the stress scenario

Using the credit portfolio model introduced in Sect. 4.2 as quantitative framework,

the specification of the model constraints is formalized as follows. A subset S ⊆
{1, . . . , m} is defined, which identifies the stressed factors �i , i ∈ S. For each of

these factors a cap Ci ∈ R is specified. The purpose of the thresholds Ci , i ∈ S, is

to restrict the sample space of the model. More formally, the restricted sample space

�̄ ⊆ � is defined by

�̄ := {ω ∈ � | �i (ω) ≤ Ci for all i ∈ S}. (9.8)

In other words, ω ∈ � is an element of the restricted sample space �̄ if none of the

stressed factors exceeds its threshold in the event ω. Note that the probability P(�̄)

of the restricted sample space �̄ under the original probability measure P provides

information on the likelihood of the stress scenario.

Although the formal framework for implementing stress scenarios is simple the

actual translation of scenarios into model constraints can be rather complex depend-

ing on the specification of the scenario. If a scenario is defined in terms of con-

straints on the existing systematic country and industry factors the implementation

is straightforward. However, even the identification of systematic risk factors is a

difficult problem if the given scenario specification involves economic variables that

cannot easily be mapped to the country and industry classification used in the model,

e.g. the implementation of a drop in US house prices would require an analysis of

the potential impact on different countries and industries before the scenario can be

translated into model constraints. A more transparent approach, however, is

1. to add a US house price index to the set of systematic factors,

2. to extend the joint distribution of systematic factors in order to capture the depen-

dence between US house prices and the country and industry factors of the model

and

3. to implement this stress scenario through a constraint on the new factor.

It is important to note that the new macroeconomic factor - in the present example

the US house price index - is not included in the decomposition of the ability-to-pay

variable in (9.2), i.e. the US house price index has a weight of zero in all ability-to-pay

variables. As a consequence, the behaviour of the unstressed model is not affected.

However, the dependence between new macroeconomic factors, denoted by

�1, . . . , �k , and the industry and country factors �1, . . . �m is captured in the

http://dx.doi.org/10.1007/978-3-662-54486-0_4
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extended covariance matrix of the larger factor model (�1, . . . �m, �1, . . . , �k). In a

stress scenario, the conditional distribution L((�1, . . . �m)|�1 ≤ C1, . . . , �k ≤ Ck)

of the country and industry factors given the constraint on the macroeconomic factors

is used in (9.2) to obtain the stressed ability-to-pay variables. Therefore, the con-

straints on macroeconomic factors have an impact on the distribution of the country

and industry factors in a stress scenario and, consequently, also on the ability-to-pay

variables of all counterparties.

The above example illustrates that, in principle, the initial set of country and indus-

try factors can be extended by a large number of macroeconomic and market factors

in order to provide a comprehensive model for stress testing. However, the specifica-

tion of the joint distribution of these different factors (�1, . . . �m, �1, . . . , �k) is a

challenging problem due to differences in the data frequency, e.g. quarterly GDP data

versus daily market data, potential time lags between market and macroeconomic

variables, etc.

Stress tests are frequently specified by setting the respective risk factors to specific

values, e.g. a 10% drop in US house prices in a stress scenario compared to a 2%

increase in the baseline scenario. In order to implement this scenario in our model

the 10% drop has to be translated into a truncation threshold:

1. using historic house price volatility together with the baseline scenario we cali-

brate a distribution of US house price changes and

2. based on that distribution, we specify the truncation threshold C such that the

conditional mean, i.e., the average of US house price changes below C , equals

the 10% drop.

This technique can be generalized to a multi-factor stress scenario. However, if a

stress scenario is not consistent with the correlation structure of the model, e.g. if two

factors behave differently in the stress scenario although they are almost perfectly

correlated in the underlying model, it will not be possible to precisely replicate

the specified stress values through multi-dimensional thresholds. In this case, an

optimization problem has to be solved instead that results in thresholds that provide

the best possible replication but not a perfect match.

Restricting the state space through constraints on systematic factors is a flexi-

ble technique to incorporate stress scenarios into the portfolio model. So far, we

have only considered stress scenarios that are defined by truncating factor distrib-

utions. Alternatively, stress scenarios could be defined via defining more complex

constraints than simple caps on individual factors. One possibility is to restrict the

state space of the model in such a way that the dependence of particular risk factors is

increased. This technique provides an interesting alternative to simply changing cor-

relation parameters of the model. By keeping the original model parameters intact,

consistency problems are avoided such as maintaining the positive semi-definiteness

of the correlation matrix of the systematic factors.
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9.3.3 Calculation of Stressed Risk Capital

The actual calculation of the stressed loss distribution of the portfolio is done through

Monte Carlo simulation on the restricted model space (�̄, Ā, P̄), see (9.8). It is

therefore straightforward to calculate risk measures like expected loss, value-at-

risk or expected shortfall for the loss distribution under stress and to use statistical

techniques such as QQ-plots to study its behavior.

It depends on the particular purpose of a stress test which of those risk measures

is used to quantify the impact of a stress test on the credit portfolio. One possibility

is to analyze whether current capital requirements cover realized losses in stress

scenarios and to use stress tests for the calculation of the conditional expected loss.

Another application of stress tests is the analysis of future capital requirements, e.g.

the bank wishes to satisfy its EC constraint one year into the future. If the stress event

arrives within the one year horizon, then the bank will need capital sufficient to meet

its EC requirement conditional on that stress event. This type of analysis requires

the calculation of the VaR of the stressed portfolio. Finally, the future regulatory

capital requirements in stress scenarios can be assessed by recalculating the Basel II

formula with the stressed PDs from the multi-factor model. Since regulatory capital

requirements are essential for capital management and strategic planning we regard

this impact analysis as an important component of the stress testing methodology in

a financial institution.

In the following, we will describe our approach by means of a specific scenario. As

an example, consider a downturn scenario for the automotive industry. The simplest

implementation in the portfolio model is the following restriction of the state space

of the model: only those samples are considered in the Monte Carlo simulation where

the automotive industry factor decreases by a certain percentage, say at least 2%.

In other words, the distribution of the automotive industry factor is truncated from

above at –2%. More precisely, the steps in the calculation of stressed EL and EC are:

• simulate risk factors under their original (non-stress) joint distribution,

• dismiss any simulation not satisfying the scenario constraints,

• derive EL, EC and other statistics from the loss distribution specified by the MC

scenarios that satisfy the constraints.

Note that the automotive downturn scenario does not only have an impact on the

automotive industry factor: because of correlations, other country factors as well

as industry factors are also affected. Figure 9.1 shows the stressed distribution of

the automotive industry factor (left) and the impact on the factor for the chemical

industry (right): the distribution of the automobile factor has been truncated, while

the distribution of the chemical industry factor is no longer centered but has moved

to the left.2

2The distributions in Fig. 9.1 can be represented in a simple way: if Fauto(x) denotes the (Gaussian)

distribution of the automobile factor, its truncated distribution is given by Fauto(x)/Fauto(−2%)

for x ≤ −2%. The factor for the chemical industry is called an incidentally truncated variable. Its

marginal distribution is given by Fauto,chem(−2%, y)/Fauto(−2%), where Fauto,chem denotes the

joint distribution of the two industry factors.
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Automobile Histogram (Stress Case)

Automobile (% change)

Chemicals Histogram (Stress Case)

Chemicals (% change)
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Fig. 9.1 Histogram of simulated factor changes (stress case)

9.3.4 Case Study

We consider the following downturn scenario for the automotive industry: the indus-

try production is forecast to drop by 8% during next year. Using the methodology

presented in Sect. 9.3.2 this forecast is translated into a cap on the distribution of the

automobile factor.

In this case study, the stress is applied to a sample investment banking portfo-

lio, which consists of 25,000 loans with an inhomogeneous exposure and default

probability distribution. Its total exposure is 1000 mn EUR, average exposure size

is 0.004% of the total exposure and the standard deviation of the exposure size is

0.026%. Default probabilities vary between 0.02 and 27%. Figure 9.2 exhibits the

portfolio’s exposure by rating class both for automotive companies and all other

borrowers.

Application of the downturn scenario yields the risk estimates shown in

Table 9.1.

These key statistics provide important information on the impact of the stress

scenario. The 99.98% confidence interval has been chosen because we use the cor-

responding value-at-risk for the EC calculation. Note that the relative EL increase of

55.6% is significantly higher than the 19% increase of the 99.98% VaR. This results

in a 16.3% increase of economic capital defined as 99.98% VaR minus EL.

Figure 9.2 exhibits the portfolio’s exposure by rating class both in the non-stress

and stress case. The analysis is done separately for automotive companies and all

other borrowers. Figure 9.2 clearly shows that exposure is shifted from investments

grades (BBB or above) to non-investment grades. As expected, the deterioration of

ratings is more pronounced for the automotive industry. Note, however, that due to
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Fig. 9.2 Exposure by rating class for automotive companies (left) and all other borrowers (right)
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Fig. 9.3 Left graph Density plots of original (circles) and stressed (triangles) loss distributions,

together with fitted Vasicek curves. Right graph QQ plot of original against stressed loss distribution

the dependence structure of the portfolio this stress scenario also has a significant

impact on other borrowers.

Rather than just looking at certain quantiles or other summary statistics, we can

get a better understanding of the impact of a stress scenario by studying the whole

loss distribution before and after the stress. In order to see the effect of the automotive

stress scenario on the portfolio loss, the left graph of Fig. 9.3 shows the original (cir-

cles) and the stressed (triangles) loss densities, together with fitted Vasicek distribu-

tions (curves). The corresponding QQ-plot, i.e., the quantiles of the two distributions

plotted against each other, is shown in the right graph.

The final step in this case study is the calculation of the regulatory capital require-

ments conditional on the stress event: recalculating the Basel II formula with the

stressed PDs increases the regulatory capital from 131.41 to 156.48 mn. In this
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Table 9.1 Portfolio risk estimates

Non-stress Stress % chg.

Expected loss 7.03 10.94 55.6

99.98% VaR 103.23 122.80 19.0

Expected shortfall at 99.98% 119.68 145.45 21.5

Economic capital 96.20 111.86 16.3

example, the increase of 19% is in line with the increase of the 99.98% quantile

(see Table 9.1).

9.4 Stressed Correlations and Default Probabilities

In the above case study, the expected loss of the portfolio is increased by more

than 50% under stress whereas the proportional EC increase is significantly lower.

In order to better understand the high sensitivity of the expected loss we analyse

the behaviour of default probabilities in stress scenarios, see Sect. 9.4.3. Whereas

default probabilities are the only relevant component for the EL, stressed EC also

depends on the correlations in the stressed model. Section 9.4.2 deals with stressed

asset correlations, an analysis of stressed default correlations is part of Sect. 9.4.3.

Our presentation follows Kalkbrener and Packham (2015b).

It is not surprising that the joint distribution of risk factors has a significant impact

on the behaviour of default probabilities and correlations under stress. In order to

cover a wide range of light-tailed to heavy-tailed distributions we perform our analy-

sis in factor models that follow a normal variance mixture distribution, which is

introduced in Sect. 9.4.1.

9.4.1 Distribution of Model Variables

The standard approach in credit risk management is to model the risk factors and

ability-to-pay variables through a joint multi-variate normal (aka Gaussian) distri-

bution. In order to specify a more flexible dependence structure we introduce an

additional random variable W , the so-called mixing variable, which is strictly pos-

itive and independent of the systematic and idiosyncratic factors. The definition of

the ability-to-pay variables is generalized to
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A j = W (

√

R2
j

m
∑

i=1

w j i�i +
√

1 − R2
j ε j ) (9.9)

=
√

R2
j

m
∑

i=1

w j i W�i +
√

1 − R2
j Wε j (9.10)

and the systematic and idiosyncratic risk factors now have the form W�i and Wε j

respectively. The ability-to-pay variables and risk factors specified in this way fol-

low a so-called multivariate normal variance mixture (NVM) distribution. The most

important distribution classes covered in this general model are the multivariate nor-

mal distribution, in which case the variable W equals 1, and the multivariate Student-t

distribution, where W 2 follows an inverse gamma distribution. The Student-t distri-

bution allows for more extreme events than the normal distribution and is therefore

a commonly used alternative in financial modelling. Compared to the normal distri-

bution, it takes one additional parameter, the so-called degrees of freedom, denoted

by ν, that controls the heaviness of the tails. For more details we refer to McNeil

et al. (2005).

In general, the tail behaviour of the risk factor W determines the so-called heav-

iness of the tails of the A j : If the tail function P(W ≥ x) follows a power law, e.g.

P(W ≥ x) ≈ x−ν for a ν > 0 and large x , then the ability-to-pay variables are said

to have heavy tails. If W is bounded or its tail function decays exponentially, e.g.

P(W ≥ x) ≈ e−x for large x , then A1, . . . , An are light-tailed.3 The normally dis-

tributed model and the Student-t distributed model are examples of light-tailed and

heavy-tailed models, respectively.

For the sake of simplicity, it will always be assumed that the first risk factor W�1

is truncated. We denote this factor by V := W�1.

9.4.2 Asset Correlations Under Stress

For ability-to-pay variables (or asset returns) Ai and A j we denote their (uncondi-

tional) correlation by ρi j , the correlation of Ai with risk factor V will be denoted by

ρi .

It turns out that asset correlations are less sensitive to stress in heavy-tailed models

than in light-tailed models. For illustration, we assume that A1 and A2 are normally

distributed and set ρ12 = 0.4. Figure 9.4 shows the impact on asset correlations when

risk factor V is truncated: The left plot shows a scatter plot of 5000 simulated samples

of A1 and A2. All simulated scenarios are relevant in the unstressed model. In the

right plot only those scenarios are shown where the stressed risk factor V does not

exceed a threshold C , where C is chosen such that the stress probability P(V ≤ C)

3The precise definition is based on the theory of regular variations, see McNeil et al. (2005). Heavy-

tailed models correspond to a regularly varying tail function of W , whereas a model is light-tailed

if W is bounded or its tail function is rapidly varying.
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Fig. 9.4 Left Simulated normally distributed asset returns A1 and A2 with correlation 0.4; A1 and

A2 are correlated to the joint driving risk factor V with correlation 0.6. Right Samples conditional

on V ≤ −1.28 which corresponds to a stress event with probability 10%; the correlation of the

sample is 0.1, which is far smaller than the original correlation of 0.4

equals 10%. As a consequence, only approximately 500 of the 5000 scenarios are

considered under stress. Since the Ai and V have a positive correlation of 0.6 the

average value of Ai in the stressed model is negative, which results in a higher number

of defaults. It can also be observed that the asset correlation of 0.4 is significantly

reduced under stress, i.e., the correlation of A1 and A2 drops to 0.1.

For comparison, we now repeat the calculation for heavy-tailed t-distributed Ai

using the same correlation assumptions as in Fig. 9.4. The left graph of Fig. 9.5 shows

stressed asset correlations, where instead of the stress level C , stress is expressed

by stress probabilities, which are just the probabilities associated with the stress

event, P(V ≤ C). For instance, values at 10−1 correspond to a stress scenario with

probability 10%. Stressed asset correlations are shown for normally distributed and

t-distributed assets with degrees of freedom ν = 10 and ν = 4.

Stressed asset correlations may be either greater or smaller than the unconditional

asset correlation depending largely on the correlations between the risk factor and

the respective asset returns. As illustrated in Fig. 9.5, when the assets in question are

sufficiently correlated with the risk factor, the stressed correlation is typically smaller

than the unstressed correlation. Loosely speaking, in such a case systematic risk is

reduced by conditioning on the risk factor, whereas unsystematic risk remains.

The stressed correlations in the left graph of Fig. 9.5 are calculated with analytic

formulas derived in Kalkbrener and Packham (2015a). For normally distributed asset

returns Ai , A j their asset correlations conditional on stress level C are given by

CorrC(Ai , A j ) =
ρi ρ j VarC(V ) + ρi j − ρi ρ j

√

(ρ2
i VarC(V ) + 1 − ρ2

i )(ρ
2
j VarC(V ) + 1 − ρ2

j )

, (9.11)
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Fig. 9.5 Left Stressed asset correlation for different distribution assumptions as a function of the

stress probability. Right Stressed asset correlation as a function of the tail index when the stress

event is taken to the limit −∞. Correlations are as in Fig. 9.4

with

VarC(V ) = 1 −
C φ(C)

N(C)
−

(φ(C))2

(N(C))2
,

where φ denotes the standard normal density function and N denotes the standard

normal distribution function. A corresponding, but more involved, formula is also

derived for the Student t-distribution.

The severity of the stress is increased by setting the stress level C to higher nega-

tive values, or equivalently, reducing the probability of the stress scenario specified

by P(V ≤ C). By letting P(V ≤ C) converge to 0, e.g. by moving to the right in the

left graph of Fig. 9.5, we arrive at the asymptotic limit, which is of particular impor-

tance for understanding the model behaviour under stress. The right-hand side graph

of Fig. 9.5 shows the asymptotic limit of stressed asset correlations for t-distributed

assets with different values for ν, where ν = ∞ corresponds to the normally dis-

tributed case. The asymptotic analysis confirms the higher sensitivity of light-tailed

asset variables under stress.

We have also derived concrete formulas for the asymptotic case, see Kalkbrener

and Packham (2015a). These formulas hold in the more general setup of normal

variance mixture models. For heavy-tailed NVM models the asymptotic limit of the

stressed correlation of Ai and A j equals

ρi ρ j + (ρi j − ρi ρ j ) (ν − 1)
√

(ρ2
i + (1 − ρ2

i ) (α − 1)) (ρ2
j + (1 − ρ2

j ) (ν − 1))
, ν > 2, (9.12)

if the risk factor is stressed asymptotically, i.e., if V is truncated at a threshold C , and

C converges to −∞. The parameter ν specifies the tail index of the asset returns and

the risk factor in the heavy-tailed case and corresponds just to the degrees of freedom
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defined for t-distributions. The case when the variables are light-tailed corresponds to

the limit as ν → ∞, in which case the asymptotic limit of the conditional correlation

between Ai and A j is
ρi j − ρi ρ j

√

(1 − ρ2
i )(1 − ρ2

j )
. (9.13)

Finally, note that the analysis in this section is not restricted to credit portfolio models

but holds for any portfolio model with asset variables and risk factors that follow a

normal variance mixture distribution.

9.4.3 Default Probabilities and Default Correlations Under

Stress

The credit-specific quantities entering credit portfolio models are the default proba-

bilities and default correlations. Just as for asset correlations, their asymptotic behav-

iour depends on whether the credit portfolio model follows a light- or heavy-tailed

NVM distribution. In the light-tailed case, default probabilities converge to 1 under

extreme stress and default correlations converge to 0.4 In other words, default of the

entire portfolio becomes a sure event under extreme stress and correlations between

default indicators become irrelevant.

In contrast, asymptotic default probabilities and asymptotic default correlations

are in (0, 1) in the heavy-tailed case. Both quantities depend on the tail index ν and

can be expressed in terms of the Student t-distribution function. More specifically,

the asymptotic default probability under stress for a model with tail index ν is given

by Abdous et al. (2005) and Packham et al. (2014):

lim
C→−∞

P(A1 ≤ D1|V ≤ C) = tν+1

⎛

⎝

√
ν + 1 ρ1

√

1 − ρ2
1

⎞

⎠ ∈ [1/2, 1), (9.14)

where tν is the distribution function of the Student-t distribution with parameter

ν. A formula for bivariate default probabilities – albeit more involved – and an

integral representation for multivariate default probabilities that can be calculated

numerically, are derived in Packham et al. (2014).

In all models – whether heavy-tailed or light-tailed – the asymptotic limit

of stressed default probabilities and default correlations does not depend on the

unstressed default probabilities. For the heavy-tailed case, the tail index and the

unstressed correlations enter the asymptotic results.

4In this subsection, we assume that the unconditional correlations between asset returns A1, . . . , An

and the risk factor V are positive and less than 1, i.e., ρi , ρi j ∈ (0, 1) for i, j ∈ {1, . . . , n}.
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In summary, the impact of stress on the asymptotic limit of default probabilities

and correlations is greater in light-tailed models than in heavy-tailed models. This is a

remarkable observation since light-tailed models, in particular normally distributed

models, are usually considered less sensitive to extreme stress than heavy-tailed

models: a popular measure in finance to assess the ability of a bivariate distribution

to generate joint extreme events – the tail dependence – is zero in light-tailed models,

whereas it is a positive number in heavy-tailed models. In order to better understand

this phenomenon we now compare the behaviour of limiting default probabilities to

tail dependence.

The tail dependence, or more precisely, the coefficient of (lower) tail dependence

of the identically distributed variables V and A1 is defined as5

λl(V, A1) := lim
C→−∞

P(A1 ≤ C |V ≤ C). (9.15)

Hence, the tail dependence of V and A1 measures the probability P(A1 ≤ C) con-

ditional on the event {V ≤ C} for stress levels C converging to −∞. If the NVM

distributed random variables V , A1 are heavy-tailed with tail index ν, the tail depen-

dence coefficient is given by

λl(V, A1) = 2tν+1

(

−

√

(ν + 1)(1 − ρ1)

1 + ρ1

)

,

see McNeil et al. (2005). It follows that the tail dependence is strictly positive for

heavy-tailed models, provided that ρ1 > −1. For light-tailed NVM distributions, the

tail dependence is zero. This includes, of course, the normal distribution, which is

still the de-facto standard for modelling risk factors and asset log-returns in structural

credit portfolio models, such as CreditMetrics™(Gupton et al. 1997) and Moody’s

KMV Portfolio Manager™(Crosbie and Bohn 2002).

The zero tail dependence is in contrast to the asymptotic default probability in

the light-tailed case, where default is a sure event. Similarly, tail dependence and

asymptotically stressed default probabilities disagree in the heavy-tailed case. The

left graph of Fig. 9.6 illustrates the difference between tail dependence and asymptotic

stressed PD’s as a function of the tail index ν.

To make the relation between tail dependence and asymptotic stressed PD’s more

precise, we introduce an additional parameter x ∈ R and measure the probability

P(A1 ≤ x · C) conditional on the event {V ≤ C} for stress levels C converging to

−∞. More formally, we consider the function

λ(V, A1, x) := lim
C→−∞

P(A1 ≤ x · C |V ≤ C), x ∈ R,

5In the general case, when V and A1 are not identically distributed, the tail dependence coefficient

is defined via quantiles, see McNeil et al. (2005).
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Fig. 9.6 Left Tail dependence coefficient and asymptotic PD under stress as a function of the tail

index ν. Right Tail dependence function λ(V, A1, x) for light- and heavy-tailed variables; special

cases arise at x = 0 (stressed PD’s) at x = 1 (tail dependence). The initial correlation between the

ability-to-pay variable and the risk factor is 0.6 in both cases

which provides an elegant generalization of both concepts: the tail dependence coef-

ficient of V and A1 equals λ(V, A1, 1), whereas the asymptotic stressed PD corre-

sponds to λ(V, A1, 0). A closed-form expression for λ(V, A1, x) can be obtained

via elementary transformations from Abdous et al. (2005), see also Packham et al.

(2014). The tail dependence function is illustrated in the right graph of Fig. 9.6.

The analysis of the function λ(V, A1, x) illustrates the fundamentally different

behaviour of the tail dependence coefficient and asymptotic stressed PD’s in light-

tailed and heavy-tailed credit portfolio models. In the light-tailed case, the asset

variable A1 converges to −∞, more specifically, it is concentrated at ρ1 · C when

V ≤ C and C → −∞. In the heavy-tailed case, however, A1 does not show the

same uniform asymptotic behaviour: 0 < λ(V, A1, x) < 1 holds for all x ∈ R and,

in particular, tail dependence as well as stressed default probabilities are in (0, 1).

In summary, this analysis clearly shows that the tail dependence coefficient only

provides partial information on a model’s ability to produce extreme (joint) events.

A more comprehensive picture is given by function λ(V, A1, x), which also explains

the observed differences between tail dependence and asymptotic stressed PD’s.

So far, our analysis has focused on asymptotic stressed default probabilities. For

practical purposes, the model behaviour at smaller and therefore more realistic stress

levels is even more important. Hence, we now take a closer look at PD’s under stress

for various stress levels C and compare them in light- and heavy-tailed models.

Figure 9.7 shows PD’s under stress for both normally distributed and t-distributed

(ν = 3) models as a function of the stress probabilities. The unconditional correla-

tion between the ability-to-pay variable and the risk factor is 0.6. Despite converging

to a value smaller than 1, PD’s under stress in the t-distributed model dominate the

normally distributed case unless the stress probability is very small: If the uncondi-

tional PD is 10%, then for stress probabilities greater than approximately 10−3.5, the

PD under stress in the t-distributed model is greater than the respective PD in the

normal model. If the unconditional PD is 1%, then the threshold lies beyond 10−8.
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Fig. 9.7 PD’s under stress as a function of the stress probability. Models considered are the normal

distribution and the t-distribution with parameter ν = 5. Correlations are 0.6. Left unconditional

PD is 0.1. Right unconditional PD is 0.01

Fig. 9.8 Risk measures for portfolio consisting of 60 homogeneous counterparties, each with a PD

of 1%. Left Value-at-risk at 99% confidence level; middle Expected loss; right Economic capital

This example shows that for realistic stress tests the impact on PD’s is usually

greater in heavy-tailed models. Only for rather extreme stress severities, stressed

PD’s become higher in light-tailed models and eventually converge to 1.

9.5 Risk Measures

The different behaviour of light-tailed and heavy-tailed models has implications

on the credit reserves and capital requirements in stress scenarios, as demonstrated

by the following stylized example. Consider a homogeneous portfolio consisting

of 60 counterparties. Each counterparty has notional and loss-at-default of 1/60

and defaults with a probability of 1%. The asset variables of the counterparties are

correlated through one risk factor, with ρ = 0.4 the correlation between any one

counterparty and the risk factor. This implies that the counterparties are correlated

with ρ2 = 0.16.

Figure 9.8 shows the value-at-risk, the expected loss and the resulting economic

capital for the portfolio under different distribution assumptions, i.e., under a normal
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distribution and t-distributions with ν = 4 and ν = 10, and for different stress levels.

As before, the stress level C is translated into a stress probability, which denotes the

probability that a certain stress event occurs. The left graph shows the 99%-value-

at-risk of the portfolio. Despite being lower under moderate stress, the VaR in a

normally distributed model converges to 1, whereas the VaR for a very heavy-tailed

model (t-distribution with ν = 4) converges to a number strictly smaller than 1, see

Packham et al. (2014) for the calculation of the asymptotic results. When comparing

the two t-distributed models, the more heavy-tailed model with ν = 4 has higher risk

for moderate stress levels, but lower risk for less probable stress events.

Similar observations hold for the expected loss (middle graph). The expected loss

under stress corresponds just to the probability of default under stress, since the

recovery rate is 0 in this example. The asymptotic results, Eq. (9.14), confirm that the

EL converges to 1 in the light-tailed case, whereas it converges to a number strictly

smaller than 1 in the heavy-tailed cases. Finally, economic capital converges to zero

for normally distributed models and to a number strictly greater than zero for heavy-

tailed models (a confidence level of 99% for economic capital may not be realistic

in practice, but serves well to illustrate some key characteristics of the stressed

portfolios). Because stress has different impact on value-at-risk and expected loss,

economic capital is not monotone, but increases under moderate stress and decreases

for greater stress levels.

To conclude, in light-tailed models, extreme stress scenarios tend to heavily

increase the credit reserves specified by the expected loss whereas economic capital,

which defines capital requirements, converges to 0. The impact of extreme stress on

expected loss and economic capital is more balanced in heavy-tailed models, whose

asymptotic limit retains a richer dependence structure.

9.6 Conclusion

In this paper, we have presented a general approach to implementing stress scenarios

in a multi-factor credit portfolio model. The general philosophy behind this type of

stress test is that stress scenarios are implemented through a restriction of the prob-

ability space of the model or, in other words, certain future scenarios are no longer

considered possible. The calculation of the stressed portfolio loss distribution is done

under a probability measure that contains additional information. The scenarios are

then implemented in a way that is consistent with the quantitative framework, i.e.,

without destroying the dependence structure of risk factors in the model. This is

achieved by translating the economic stress scenarios into constraints on the system-

atic factors. The main prerequisite here is that the systematic factors of the credit

portfolio model can be linked to economic variables.

Although the methodology has been developed in a particular factor model, the

main concept - implementing stress scenarios through a truncation of the distribution

of the risk factors - is completely independent of the model specification and the way

that default dependencies are parameterized, e.g. whether asset or default correlations
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are used. In fact, it can be applied to factor models for market and operational risk

as well. However, the model choice has significant implications for the behavior of

correlations under stress. In ordinary stress tests, stressed PD’s are usually higher in

heayy-tailed models. Contrary to popular belief, however, the impact of stress on the

asymptotic behaviour is greater in light-tailed models than in heavy-tailed models.

Disclaimer

The views expressed in this paper are those of the author and do not necessarily

reflect the position of Deutsche Bank AG.
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Breuer, T., Jandačka, M., Rheinberger, K., & Summer, M. (2009). How to find plausible, severe,

and useful stress scenarios. International Journal of Central Banking, 5(3), 205–224.
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Chapter 10

Penalized Independent Factor

Y. Chen, R.B. Chen and Q. He

Abstract We propose a penalized independent factor (PIF) method to extract inde-

pendent factors via a sparse estimation. Compared to the conventional independent

component analysis, each PIF only depends on a subset of the measured variables and

is assumed to follow a realistic distribution. Our main theoretical result claims that

the sparse loading matrix is consistent. We detail the algorithm of PIF, investigate its

finite sample performance and illustrate its possible application in risk management.

We implement the PIF to the daily probability of default data from 1999 to 2013.

The proposed method provides good interpretation of the dynamic structure of 14

economies’ global default probability from pre-Dot Com bubble to post-Sub Prime

crisis.

10.1 Introduction

Sovereign default probability reflects financial vulnerability and sovereign financing

or refinancing difficulties or default of advanced and emerging market economies. It

is considered as a fundamental early warning indicator of financial crises and conta-

gions of global financial markets. Thus, sovereign credit ratings and the associated

sovereign default rates continue to be a major concern of international financial mar-

kets and economic policy makers. According to the current version of Basel Capital

Accord 3, financial institutions will be allowed to use credit ratings and the corre-

sponding default rates to determine the amount of regulatory capital they have to
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reserve against their credit risks. It prompts the booming research interests on the

determinants and co-movements of sovereign defaults.

While the large amount of information containing in the sovereign default data

makes it possible to understand the dependence among economies, the massive sam-

ple size, high dimensionality and complex dependence structure of the data create

computational and statistical challenges. It turns out that data analysis in a reduced

space often accompanies with improved interpretability and estimation accuracy.

This possibly explains the wide adoption of factor models in literature.

Factor models try to decipher complex phenomena of large dimensional data

through a small number of basic causes or factors. Though the factors are often sup-

posed to be macroeconomic and financial determinants, our study intends to launch a

new investigation into the identification of factors of sovereign default probabilities in

a data-driven way. From a statistical viewpoint, understanding the dependence among

these sovereign default probabilities relies on the estimation of the joint probability

distribution of the multiple variables. The conventional methods such as Principal

Component Analysis (PCA) and Factor Analysis (FA) extract a set of uncorrelated

factors from the multivariate and dependent data within a linear framework. Under

Gaussianity, non-correlation is identical to independence. With the aid of Jacobian

transformation, the complex joint distribution can be obtained by using the marginal

distributions of each factor in a closed form. Thus, the high dimensional statistical

problem is converted to univariate cases. Independence however does not hold, if the

measured variables e.g. the sovereign default probabilities are not Gaussian distrib-

uted, which is most likely in practice. In this case, the joint distribution estimation

cannot be easily solved with the help of the conventional methods.

The recently developed Independent Component Analysis (ICA) method sheds

lights on possible solutions. Similar to the PCA and FA methods, the ICA iden-

tifies essential factors via a linear transformation. Instead of projecting onto the

eigenvectors of the covariance matrix as PCA does, the ICA directly extracts statis-

tical independent factors from the original complex data via solving an optimization

problem on statistical cross-independence. Depending on the definition of indepen-

dence, various estimation methods have been proposed, including the maximization

of nongaussianity (Jones and Sibson 1987; Cardoso and Souloumiac 1993; Hyväri-

nen and Oja 1997), the minimization of mutual information (Comon 1994; Hyvärinen

1998, 1999a), the maximum likelihood estimation (Pham and Garat 1997; Bell 1995;

Hyvärinen 1999b), and the local parametric estimation with time varying loading

(Chen et al. 2014).

In high dimensional space, however, ICA leads to redundant dependence by

assuming each factor is associated with all the measured variables. The overpara-

metrization is solvable by either reducing the number of factors or simplifying the

structure of the loading matrix. Wu et al. (2006) proposed an ordering approach

based on the mean-square-error criterion to identify the number of ICs. This dimen-

sion reduction eventually accompanies with loss of information. On the other hand,

the dependence between the measured sovereign default probabilities and the factors

can be sparse. A possibly more realistic situation is that each measured variable is

only driven by a few factors, while others depend on a possibly different set of fac-
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tors. It suggests necessity to reduce dimensionality in parameter space, with a sparse

loading matrix.

Sparse estimation has been widely used especially in the regularized regression

analysis. Under the sparsity assumption, unnecessary dependence is penalized and

insignificant coefficients are pushed to zeros, see e.g. Lasso (Tibshirani 1996), Ridge

(Frank and Friedman 1993) and the smoothly clipped absolute deviation (SCAD)

penalty (Fan and Li 2001) and so on. The adoption of sparsity in independent com-

ponent analysis is still new. Hyvärinen and Raju (2002) proposed sparse Bayesian

ICA, where the loading matrix is assumed to be random and a conjugate sparse prior

is imposed to the loading matrix. Zhang et al. (2009) incorporated adaptive Lasso in

the maximum likelihood estimation method to obtain sparse loading matrix, where

the statistical independent factors are assumed to follow a simple distribution fam-

ily with one parameter. Theoretical properties of the estimators are unknown in the

above works.

We are motivated to propose a penalized independent component analysis method,

named PIF, to extract statistical independent factors via a sparse linear transformation.

The sparse loading matrix is estimated under normal inverse Gaussian distributional

assumption with SCAD penalty. Our main theoretical result claims that the sparse

loading matrix estimator is consistent. The proposed PIF method displays appealing

performance in simulation study. We implement the PIF to the daily probability

of default data of Corporate Vulnerability Index from 1999 to 2013. The proposed

method shows superior interpretation of the dynamic structure of 14 economies’

global default probability from the pre-Dot Com bubble period to the post-Sub Prime

crisis period.

The remainder of the paper is structured as follows. Section 10.2 details the

sovereign default probability data. Section 10.3 presents the penalized independent

factor method, the estimation procedure and statistical prosperity of the estima-

tor. Its finite sample performance is investigated along with simulation study in

Sect. 10.4. Section 10.5 implements the PIF method to the sovereign default proba-

bilities. Section 10.6 concludes.

10.2 Data

We consider the sovereign default probabilities of 14 economies from 1st April 1999

to 31st December 2013. The data are the equally-weighted Corporate Vulnerabil-

ity Index (CVI), proxies of sovereign default probability, maintained in the Credit

Research Initiative, Risk Management Institute at National University of Singapore.

The CVI of each economy is constructed by averaging of all the listed firms’ proba-

bility of default (PD) in the corresponding exchange. It is worth mentioning that the

number of firms considered over the time horizon is not fixed, given the happening of

default events and IPOs. For example, on 1st Apr 1999, there were 717 firms listed in

the stock exchange of China, and on 31st Dec 2013, the number of listed firms went

up to 3017. The PDs were computed using the forward intensity approach in Duan
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Fig. 10.1 Time series plot of the 14 economies CVI data. Gray shadow is the Dot Com bubble

period and light greed shadow is the Sub Prime crisis

et al. (2012) with input variables of common economic factors including e.g. stock

index returns and 3-month interest rates, and firm specific factors of e.g. distance to

default, ratio of cash (equivalent) to total assets, return on assets, market to book ratio

and 1-year idiosyncratic volatility. The 14 economies include 9 advanced economies

of Hong Kong, Japan, US, Germany, Greece, Ireland, Italy, Spain, and UK, and 5

emerging ones of China, India, Indonesia, Russian and Brazil.

Figure 10.1 displays the movements of the 14 CVIs from 1999 to 2013. To under-

stand the dynamic structure of CVIs over time, we divide the time horizon of the

15 years into five sub-periods according to the business cycles announced by the

National Bureau of Economic Research, including two recessions occurred from 1st

March 2001 to 30th November 2001 (Dot Com bubble) and from 1st December 2007

to 30th June 2009 (US Sub Prime crisis). During the two recessions, the level of

CVI increases on average 26 and 53% respectively. The relatively high level of the

sovereign default probabilities continues after the recessions for a while and then

drops to low value. China, however, behaves distinctively from the rest. The CVI

of China is much larger than the others during 2002–2007, i.e. the post-Dot Com

bubble period. For example, China’s CVI is 3 times of the second highest value of

Indonesia. Table 10.1 reports the CVI summary statistics of each economy over the

15 years. China and US have the highest level (mean) of CVI. The level of the US’

CVI is high mainly during the two recessions, the Doc Com bubble and Sub Prime

crisis. China, on the other hand, though immune to the Dot Com bubble recession,

due to its constantly achieved 2-digits growth during 2003 to 2007, accompanies

with high level for the “higher return higher risk” philosophy. In terms of variation,

China reaches to the highest CVI variation, with a standard deviation of at least 12%

larger than the rest. Moreover, all CVIs are positively skewed with extreme values

and the JB statistics are all significant, indicating the deviation from Gaussianity.



10 Penalized Independent Factor 181

Table 10.1 Summary statistics of the CVI data over the time horizon, Apr 1999–Dec 2013

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(104)

China 2.19 1.21 0.71 3.17 0.06∗

Hong Kong 0.46 0.38 2.17 9.53 1.38∗

India 0.21 0.11 0.70 2.70 0.05∗

Indonesia 0.92 0.95 2.06 9.68 1.39∗

Japan 0.26 0.20 1.98 8.54 1.04∗

US 1.00 1.08 2.86 14.43 3.67∗

Germany 0.53 0.44 1.13 3.23 0.12∗

Greece 0.46 0.45 2.02 7.73 0.87∗

Ireland 0.58 1.17 4.68 29.57 17.82∗

Italy 0.22 0.16 1.83 8.00 0.86∗

Russian 0.40 1.07 5.19 32.99 22.61∗

Spain 0.18 0.13 1.13 3.72 0.13∗

UK 0.41 0.48 3.76 19.83 7.63∗

Brazil 0.72 0.33 0.79 2.46 0.06∗

The conventional PCA is not able to deliver independent factors. Table 10.2 reports

the correlation matrix of the CVI data during the 15 years, which are mostly pos-

itive except China. While China has either negative or weak correlations with the

other economies, the US remains high positive correlations to most of the advanced

economies such as Japan and UK, consistent to its influential role in the global

financial markets (Tables 10.3, 10.4, 10.5 and 10.6).

More detailed summary statistics on CVIs over the 5 time periods can be found

in Tables 10.7, 10.8, 10.9, 10.10, 10.11, 10.12, 10.13, 10.14, 10.15 and 10.16 in the

Appendix.

10.3 Penalized Independent Factor

Consider p-dimension random vector X =
(

X1, · · · , X p

)

∈ R
p. The penalized inde-

pendent factor analysis is to factorize the variables into a linear combination of latent

independent random factors Z =
(

Z1, · · · , Z p

)

∈ R
p:

Z = BX (10.1)

where B refers to a sparse and invertible loading matrix. Given the observed realiza-

tions Xi =
(

X i1, · · · , X i p

)

with i = 1, · · · , n, the task here is to estimate the sparse

loading B as well as to obtain the independent factor Zi with i = 1, · · · , n, without

any prior knowledge of the sparsity structure of B.
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Table 10.4 True Loading matrix. Zero entries are left blank
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

17 14 10 −13 21 −15

−10 15 13 19 −10 12 17 −14

−34 −11 −23 27 7 27 43 37 −24 27 18

−44 −14 13 −97 50 −12 −127 172 −65

11

7 −79 −29 146 20 −40 −206 −74 223 9

33 28 −6 −51 −19 71 182 −32 −99 −89 10

18 −109 −51 −28 −33 54 70 −62 28

−77 −20 88 −66 30 −95 −144 308 9

40 43 −13 −108 −49 −14 −79 10 −51 177 −21

−32 −92 7 57 6 −21 16 14 40 8 −114 29 −9

64 90 6 −10 −11 −22 −153 −29 28

−86 −25 17 −116 −24 26 −9 123 −47 108 10

7 −73 34 −26 −47 −17 25 −32 163 372

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Table 10.5 Simulation results for large dimension loading matrix. Each measurement is given in

the form of mean(std). The penalty parameter is λ = 0.08 by minimizing BIC. #0s is the percentage

of zero elements estimated correctly by the method. Mis-detection is the number of elements that

are wrongly pushed to zero

ED MN RMSE Detection of

zeros %

λ

PIF 88.60(26.11) 60.00(24.63) 0.20(0.10) 99.85 0.08

NIG-ICA 90.23(27.74) 61.50(25.68) 0.22(0.10) 0.00 0

ICA 419.24(56.11) 204.00(36.54) 1.29(0.05) 0.00 −

Table 10.6 Number of factors participated by each economy. Sparsity is reflected by of the

percentage of zeros in the loading matrix

Country China HK India Indo Japan US DE Greece

1999:4–2001:2 1 6 9 4 12 6 8 6

2001:3–2001:11 3 9 9 5 10 6 9 12

2001:12–2007:11 3 10 12 8 13 10 11 9

2007:12–2009:6 7 11 12 9 12 7 9 11

2009:7–2013:12 6 11 11 10 11 9 6 8

Country Ireland Italy Russian Spain UK Brazil Total Sparsity%

1999:4–2001:2 9 10 1 11 12 4 99 49

2001:3–2001:11 9 11 9 12 11 7 122 38

2001:12–2007:11 13 13 12 12 12 11 149 24

2007:12–2009:6 7 13 6 9 11 12 136 31

2009:7–2013:12 2 12 9 11 11 9 126 36
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Table 10.7 Summary statistics of the CVI data, Apr 1999–Feb 2001

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 2.08 0.59 −1.94 7.55 1.04∗

Hong Kong 0.55 0.33 1.33 4.91 0.31∗

India 0.33 0.08 0.61 3.05 0.04∗

Indonesia 2.27 1.04 3.18 14.04 4.73∗

Japan 0.32 0.05 0.24 2.35 0.02∗

US 1.13 0.63 2.62 10.94 2.64∗

Germany 0.23 0.13 2.11 6.99 0.98∗

Greece 0.25 0.27 1.08 3.14 0.14∗

Ireland 0.20 0.06 1.57 4.71 0.37∗

Italy 0.15 0.07 1.47 5.07 0.38∗

Russian 0.39 0.97 3.51 14.63 5.38∗

Spain 0.15 0.04 0.47 1.94 0.06∗

UK 0.17 0.07 1.08 3.77 0.15∗

Brazil 0.95 0.26 −0.69 2.55 0.06∗

Table 10.8 Summary statistics of the CVI data during DOT COM bubble, Mar 2001–Nov 2001

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 1.40 0.27 −2.56 16.33 2.34∗

Hong Kong 0.78 0.22 −0.03 2.11 0.01∗

India 0.44 0.04 −0.90 3.88 0.05∗

Indonesia 2.85 0.60 0.54 2.41 0.02∗

Japan 0.40 0.06 0.07 1.64 0.02∗

US 2.08 0.45 0.40 2.10 0.02∗

Germany 1.07 0.34 0.39 1.96 0.02∗

Greece 0.42 0.11 0.62 3.45 0.02∗

Ireland 0.36 0.16 1.20 3.31 0.07∗

Italy 0.40 0.08 −0.53 2.09 0.02∗

Russian 0.44 0.18 0.49 2.25 0.02∗

Spain 0.18 0.03 1.09 3.83 0.06∗

UK 0.58 0.20 0.78 2.77 0.03∗

Brazil 1.05 0.09 0.98 4.00 0.06∗

The loading matrix and independent factors are only identifiable up to scale. For

any constant c �= 0, one obtains another set of loading matrix cB and independent

factors denoted cZ satisfying (10.1). To avoid the identification problem, we assume

that the independent factors have unit variance. Moreover, we set the number of

independent factors to p, as the primary goal of our study is to convert the multi-

variate problem into a number of univariate ones with sparsity such that it eases the
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Table 10.9 Summary statistics of the CVI data, Dec 2001–Nov 2007

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 2.96 1.26 0.12 2.80 0.01∗

Hong Kong 0.43 0.32 1.20 3.43 0.54∗

India 0.17 0.09 1.21 3.60 0.57∗

Indonesia 0.80 0.62 1.24 3.33 0.57∗

Japan 0.21 0.18 1.21 3.12 0.54∗

US 0.62 0.69 1.59 4.44 1.11∗

Germany 0.46 0.46 1.27 3.23 0.59∗

Greece 0.22 0.14 1.88 8.01 3.58∗

Ireland 0.23 0.28 1.98 6.71 2.70∗

Italy 0.15 0.09 0.80 2.35 0.27∗

Russian 0.05 0.04 8.03 126.92 1425.52∗

Spain 0.08 0.05 0.93 2.40 0.35∗

UK 0.30 0.24 1.38 3.45 0.71∗

Brazil 0.68 0.33 0.90 2.34 0.34∗

Table 10.10 Summary statistics of the CVI data during Sub Prime crisis, Dec 2007–Jun 2009

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 2.29 1.02 0.23 1.98 0.03∗

Hong Kong 0.87 0.66 1.11 3.38 0.12∗

India 0.20 0.10 0.25 1.73 0.04∗

Indonesia 0.74 0.39 0.33 1.55 0.06∗

Japan 0.52 0.35 0.64 2.19 0.06∗

US 2.64 1.97 1.15 3.25 0.13∗

Germany 0.92 0.51 0.22 1.38 0.07∗

Greece 0.59 0.33 0.34 1.63 0.06∗

Ireland 2.12 2.61 1.60 4.71 0.32∗

Italy 0.42 0.20 0.54 2.55 0.03∗

Russian 1.97 2.54 1.33 3.70 0.18∗

Spain 0.36 0.10 0.04 2.52 0.01∗

UK 1.30 0.94 0.94 2.55 0.09∗

Brazil 0.99 0.42 0.23 1.33 0.07∗

understanding of the dependence with reduced parameter space and simultaneously

an improved estimation accuracy.

Denote the probability density function of each independent factor to be f j (z) for

j = 1, . . . , p. The log-likelihood is defined as:
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Table 10.11 Summary statistics of the CVI data, Jul 2009–Dec 2013

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 1.30 0.68 1.02 3.18 0.29∗

Hong Kong 0.27 0.13 0.87 2.54 0.22∗

India 0.18 0.08 −0.09 1.70 0.12∗

Indonesia 0.25 0.10 2.96 12.52 8.62∗

Japan 0.18 0.08 0.64 3.55 0.13∗

US 0.70 0.43 1.38 4.93 0.78∗

Germany 0.53 0.27 1.18 4.49 0.53∗

Greece 0.83 0.58 1.12 3.70 0.38∗

Ireland 0.70 0.96 2.43 8.19 3.46∗

Italy 0.24 0.15 2.54 13.16 8.85∗

Russian 0.31 0.25 1.47 6.31 1.34∗

Spain 0.25 0.14 0.73 2.65 0.15∗

UK 0.31 0.13 1.11 3.69 0.37∗

Brazil 0.54 0.16 1.00 3.73 0.31∗

l(B) =
n

∑

i=1

p
∑

j=1

log f j

(

b⊤
j Xi

)

+ n log |det (B)| (10.2)

where b⊤
j denotes the j-th row of B. To achieve the sparsity of the loading matrix B,

a penalty function, denoted as ρλ is added to the log-likelihood, where λ is a tuning

parameter. The penalized log-likelihood is defined as:

P(B) =
n

∑

i=1

p
∑

j=1

log f j (b
⊤
j Xi ) + n log |det (B)| − n

p
∑

j=1

p
∑

k=1

ρλ(|b jk |) (10.3)

where b jk denotes the ( j, k)-th element of the loading matrix B. Take the gradient

of the penalized likelihood function with respect to the loading matrix, we obtain:

∂P

∂B
=

∑n

i=1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f
′
1 (b⊤

1 Xi )

f1(b⊤
1 Xi )

f
′
2 (b⊤

2 Xi )

f2(b⊤
2 Xi )

...
f

′
p(b

⊤
p Xi )

f p(b⊤
p Xi )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

X⊤
i + n[B⊤]−1 − n�

where [B⊤]−1 is the inverse of transpose matrix of B, � jk = sgn(b jk)ρ
′

λ(|b jk |) is

the first derivative of the penalty function with respect to each element of the load-

ing matrix, and f
′

i (s)/ fi (s) is the first derivative of log-density function of each
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independent factor. The sparse loading matrix is estimated using the gradient method.

Given the loading matrix estimator, the independent factors are recovered in (10.1).

10.3.1 Independent Component’s Density: NIG

The density of IC is unknown. Hyvärinen (1999b) developed the maximum likelihood

estimation approach of independent factor extraction under a simple but unrealistic

distribution with one distributional parameter, and proved consistency of the esti-

mator, see also Pham and Garat (1997), Bell (1995). The log-likelihood function is

defined under a simple but unrealistic distribution with one distributional parameter.

Financial risk factors are however neither Gaussian distributed nor the special cases

of the exponential power family. Instead, the factors are often asymmetric and with

extreme values. This motivates the adoption of the normal inverse Gaussian (NIG)

distribution for its desirable probabilistic features. With 4 distributional parameters,

the NIG distribution is able to mark data characteristics from the central locations to

the tails behaviours.

In our study, each factor is assumed to be normal inverse Gaussian (NIG) distrib-

uted with individual distributional parameters. The density is of the form:

fNIG(z j ) = φ jδ j

π

K1

{

φ j

√

δ2
j + (z j − μ j )2

}

√

δ2
j + (z j − μ j )2

exp{δ j

√

φ2
j − β2

j + β j (z j − μ j )},

where μ j , δ j , β j and φ j are NIG parameters for j = 1, · · · , p. K1(·) is the modified

Bessel function of the third type. The distributional parameters fulfill the conditions

μ j ∈ R, δ j > 0, and |β j | ≤ φ j . The limiting distributions of NIG have been well

developed in bn (1997); Blæsild (1999) including the Normal distribution, the Cauchy

distribution and the Student-t distribution.

• For β = 0, φ → ∞ and δ/φ = σ2, N I G(φ,β,μ, δ) → N (μ,σ2)

• For φ,β → ∞, μ = 0 and δ = 1, N I G(φ,β,μ, δ) → Cauchy
• For φ,β → 0, μ = 0 and δ = 1, N I G(φ,β,μ, δ) → Student − t1

See bn (1997) for more details. Moreover, all independent factors are assumed to

have unit variance to avoid identification ambiguity.

10.3.2 Penalty Function: SCAD

Question remains on the selection of penalty function in the estimation. Vari-

ous penalty function has been proposed in literature, including the first order

norm penalty of Lasso (Tibshirani 1996), the second order norm penalty of Ridge
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(Frank and Friedman 1993) and the smoothly clipped absolute deviation (SCAD)

penalty (Fan and Li 2001) and so on. Among them, the SCAD penalty is theoreti-

cally desirable with oracle property and has been widely used in quantile regression,

logistic regression, high dimensional data analysis, large scale genomic data analysis

and many others, see Gou et al. (2014), Xie and Huang (2009). In our study, we use

the SCAD penalty, which is defined in the form of its first derivative:

ρ
′

λ(θ) = λ{I (θ ≤ λ) + (aλ − θ)+
(a − 1)λ

I (θ > λ)} (10.4)

where θ > 0 and a = 3.7 suggested in Fan and Li (2001).

10.3.3 Estimation

Substitute the NIG density and the SCAD penalty function into (10.3):

P(B) =
n

∑

i=1

p
∑

j=1

log f j (b
⊤
j Xi ) + n log |det (B)| − n

p
∑

j=1

p
∑

k=1

ρλ(|b jk |) (10.5)

=
n

∑

i=1

p
∑

j=1

⎧

⎨

⎩

log
φ j δ j

π

K1

(

φ j

√

δ2
j + (b⊤

j Xi − μ j )
2
)

√

δ2
j + (b⊤

j Xi − μ j )
2

+ δ j

√

φ2
j − β2

j + β j (b
⊤
j Xi − μ j )

⎫

⎬

⎭

+ n log |det (B)| − n
p

∑

j=1

p
∑

k=1

ρλ(|b jk |) (10.6)

and the gradient of the log-likelihood function is:

∂l

∂B
=

∑n

i=1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f
′
1 (b⊤

1 Xi )

f1(b⊤
1 Xi )

f
′
2 (b⊤

2 Xi )

f2(b⊤
2 Xi )

...
f

′
p(b

⊤
p Xi )

f p(b⊤
p Xi )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

X⊤
i + n[B⊤]−1 − �

where � jk = sgn(b jk)ρ
′

λ(|b jk |) and
f

′
j (s)

f j (s)
= β j + φ j

K
′
1(φ j

√
δ2

j +(s−μ j )2)

K1(φ j

√
δ2

j +(s−μ j )2)

s−μ j√
δ2

j +(s−μ j )2
−

s−μ j

δ2
j +(s−μ j )2 .

The optimization problem is solved in two steps, where maximum is achieved by

changing the loading matrix B and the NIG parameters iteratively until the algorithm

converges. The algorithm starts with an initial estimator of B0, e.g. the estimation

obtained by the conventional ICA:

1. Given the previous estimator of B, optimize the penalized log-likelihood func-

tion to obtain the NIG distributional parameters estimator. The EM algorithm is

adopted for the estimation of NIG parameters, see Karlis (2002).
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2. Based on the estimated NIG estimator, update the estimator of B by maximizing

the penalized log-likelihood function.

3. Scale the estimator of B and the NIG parameters to have unit variance of each

independent factor.

4. Repeat, until converge.

The penalized maximum likelihood estimation involves the choice of the tuning

parameter λ. While too large tuning parameter leads to over sparse loading matrix,

too small tuning parameter has over fitting effect to identify the true model. Cross

validation (Kohavi 1995) and generalized cross validation (Li 1987) can be used.

However the approaches are computational intensive. Even worse, there is a positive

probability of model over-fitting by generalized cross validation (Wang et al. 2007).

Alternatively, several information criteria have been proposed and widely used in time

series analysis. In our study, we consider using the Schwarz–Bayesian information

criterion (BIC) (Schwarz 1978) for its computation tractability and its consistency

in model selection. The BIC is defined as:

B I C = −l(B̂) + log n × #{B̂i j �= 0}

where B̂ is the estimator of B. The penalty parameter with the lowest BIC is chosen

to be optimal.

10.3.4 Property of Estimator

We prove the consistency of the PIF estimator under two conditions:

C1. The observations (X i1, . . . , X i p) are IID with density
(

g1(X, B), . . . , gp(X, B)
)

with respect to some measure μ. The density has a common support and is

identifiable. Furthermore, the first logarithmic derivatives of gi satisfying the

equation

E
∂ log ga(X, B)

∂B jk
= 0 (10.7)

for all a, j and k.

C2. E[−�a] is positive definite at point B with �a defined as:

�a =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2ga(B)

∂b11∂b11

∂2ga(B)

∂b11∂b12
. . .

∂2ga(B)

∂b11∂b1p

∂2ga(B)

∂b11∂b21
. . .

∂2ga(B)

∂b11∂bpp

∂2ga(B)

∂b12∂b11

∂2ga(B)

∂b12∂b12
. . .

∂2ga(B)

∂b12∂b1p

∂2ga(B)

∂b12∂b21
. . .

∂2ga(B)

∂b12∂bpp

...
...

...
...

...
...

...
∂2ga(B)

∂bpp∂b11

∂2ga(B)

∂bpp∂b12
. . .

∂2ga(B)

∂bpp∂b1p

∂2ga(B)

∂bpp∂b21
. . .

∂2ga(B)

∂bpp∂bpp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Theorem 10.1 Let (X11, X12, . . . , X1p), . . . , (Xn1, Xn2, . . . , Xnp) be IID measured
vector, each with a density (g1, g2, . . . , gp) that satisfies conditions (C1) and (C2).
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If max{p
′′

λn
(|B jk |) : B jk �= 0} → 0, then there exists a local maximizer B̂ of P(B)

such that ‖B̂ − B‖ = Op(n−1/2 + an), where an = max{p
′

λn
(|B jk |) : B jk �= 0}

Note that, though the density of the observed variables ga is unknown, Theorem 10.1

holds as long as the two conditions hold. Detailed proof can be found in Appendix.

10.4 Simulation

Before the implementation with real sovereign default probability data, we investigate

the finite sample performance of the PIF method first by performing a number of

simulation studies under the known data generating processes. Our interest is on

the estimation accuracy of the proposed method and its robustness under various

scenarios compared to the conventional ICA approach.

We design our simulation studies so that they properly reflect the real study at

hand. All the parameters are obtained from analyzing the Corporate Vulnerability

Index (CVI) data from April 1999 to February 2001, before the Dot Com bubble. In

the first experiment, small dimensional data are generated based on the CVIs of India,

Indonesia and Japan, 3 Asia countries of both emerging and advanced economies.

We consider 3 scenarios with non-sparsity, medium sparsity and high sparsity in

the loading matrix. In the second experiment, large dimensional data are produced,

where the parameters are learned from the CVI data of the 14 economies from April

1999 to February 2001.

In the data generation process, we follow the model setting in (10.1) and generate

dependent data with the loading matrix:

Xi = B−1Zi , i = 1, · · · , n.

The generated data are considered as the measured variables. Each experiment is

repeated 100 times with n = 200 observations. Both the PIF and the conventional

ICA methods are implemented. In addition to the two approaches, we also imple-

ment ICA with the NIG distributed source assumption, named as NIG-ICA in the

following.

We evaluate the estimation accuracy of the PIF method, with focus on the factor

loadings B and the identified factors Zi . We compare the estimation accuracy of

the PIF method based on 3 measurements. For the loading matrix, our interests are

the overall estimation accuracy and the elementary accuracy. While the Euclidean

distance (ED) is used to measure the estimation error of the loading matrix estimator,

the maximum norm (MN) reports the largest elementary bias of the matrix estimator.

For the identified independent factors, we compute the root mean squared error

(RMSE) to show the identification accuracy. The criteria are defined as follows:
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ED =
∑

jk

(

b jk − b̂ jk

)2

(10.8)

MN = max
(

|b jk − b̂ jk |
)

(10.9)

RMSE =
√

√

√

√

1

np

∑

i j

(

Z i j − Ẑ i j

)2

(10.10)

where b jk refers to the ( j, k)-th element of the matrix B, and b̂ jk represents the

corresponding element estimators.

10.4.1 Experiment 1: 3 Dimensional Data

In the low dimensioned experiment, 3 scenarios are analyzed with 3 different loading

matrices that are either non-sparse, sparse, or highly sparse:

Non-sparse loading matrix:

⎡

⎣

52.7 −10.7 14.4

−32.3 −17.3 −5.2

18.1 −6.3 12.8

⎤

⎦ ;

Sparse loading matrix:
⎡

⎣

−3.2 31.2 0

40.1 −96.4 −20.9

−29.4 18.7 0

⎤

⎦ ;

Highly-sparse loading matrix:

⎡

⎣

−3.3 31.2 0

0 10.1 0

0 44.2 −25.0

⎤

⎦ .

Table 10.3 reports the simulation results based on the 100 replications. For all the

3 scenarios, the PIF is better than ICA in terms of estimation accuracy for both the

loading matrix and the independent factors. In the sparsity scenario, the estimation

accuracy of PIF is much better with lower ED of 6.67(SD: 3.98), MN of 5.54(SD:
3.65) and RMSE of 0.09(SD: 0.03) than that of ICA with ED of 27.19(SD: 17.47),

MN of 20.40(SD: 13.61) and RMSE of 0.20(SD: 0.14). The improved accuracy

is mostly contributed by the adoption of the NIG distributional assumption. In the

highly-sparse scenario, the PIF is remarkably better than the conventional ICA. The

improvement w.r.t to the NIG-ICA becomes larger.
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Fig. 10.2 Illustration of residuals of the factors in the sparsity setup. ICA is marked as circle,

NIG-ICA is labeled with star and PIF with dot

Moreover, the tunning parameter λ is reasonably selected by using BIC. In the

non-sparsity scenario, the optimal λ is 0, indicating non-necessity of penalty as

the true loading matrix is not sparse. In the sparsity and high-sparsity scenarios, the

optimal λ becomes 0.04 and 0.07 respectively, leading to a high detection rate of

zero elements at 100 and 99% respectively. On the contrary, ICA and NIG-ICA are

not able to detect any zero elements in the loading matrix. Furthermore, there is no

mis-detection by PIF, meaning that no entries in the loading matrix are over pushed

to zero.

Figure 10.2 illustrates one representation of the estimation error of the recovered

independent factors by the PIF, NIG-ICA and ICA methods respectively in the high-

sparsity scenario. While the ICA produces more variations with wider spread, the

PIF and NIG-ICA recover the independent factor with smaller errors.

10.4.2 Experiment 2: Large Dimensional Data

In the second experiment with large dimensional data, we generate 14-dimensional

dependent data with a sparse loading matrix learning from the CVI data, over a time

span of April 1999 to February 2001. The loading matrix is shown in Table 10.4,

where 35% of elements are zero.
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The generation is repeated 100 times with n = 200 sample size. Table 10.5 reports

the estimation result. The penalty parameter of PIF is chosen to be λ = 0.08 by

minimizing BIC. The estimation accuracy of PIF is much better with ED of 88.60(SD:
26.11), MN of 60.00(SD: 24.63) and RMSE of 0.20(SD: 0.10) than that of ICA with

ED of 419.24(SD: 56.11), MN of 204.00(SD: 36.54) and RMSE of 1.29(SD: 0.05)

and slightly better than NIG-ICA with ED of 90.23(SD: 27.74), MN of 61.50(SD:
25.68) and RMSE of 0.22(SD: 0.10). In addition, PIF is able to detect 99.85% of zero

entries in the loading matrix and without any miss-detection record of non-zeros.

The simulation study shows that the proposed PIF method has good performance

compared to the alternative ICA and NIG-ICA methods with improved estimation

accuracy. The good performance mostly attributes to the adoption of the NIG distri-

bution and further by the sparsity of loading matrix. By adding the SCAD penalty

function, the proposed PIF is able to identify zero entries in the sparse loading matrix

and involves no miss-detection of non-zeros. Moreover, the penalty parameter can

be reasonably chosen by using BIC. For example, in the non-sparse scenario, the

penalty parameter is selected to be zero. The relative good performance of the PIF

is stable with respect to the increase of sparsity and dimensionality.

10.5 Real Data Analysis

In this section, we analyze the sovereign default probabilities of 14 economies from

April 1999 to December 2013. The sovereign default probabilities are quantified

as daily equally-weighted CVI (Corporate Vulnerability Index) of each economy.

The 14 economies are mixture of advanced and emerging economies including

China, Hong Kong, India, Indonesia, Japan, US, Germany, Greece, Ireland, Italy,

Russian, Spain, UK and Brazil. Data are obtained from the Risk Management Insti-

tute at National University of Singapore. We divide the time span into five sub-

periods based on the business cycles announced by the National Bureau of Economic

Research among which two recessions happened: Dot Com bubble from March 2001

to November 2001 and the US sub prime crisis from December 2007 to June 2009.

Our interest is to identify the statistical independent dominant factors and investigate

the cross-dependence of the sovereign defaults among the economies.

We implement the proposed PIF method. Table 10.6 summarizes the sparse struc-

ture of the loading matrices over the 5 time periods. Each economy column reports

the number of non-zero elements in the column of loading matrix, representing the

number of factors participated in the economies. The total number of non-zero ele-

ments in the loading matrix is summarized in the column Total. Sparsity is reflected

by the percentage of zero elements in the loading matrix. It shows that there is a

V-shape sparsity in terms of US default probability over time, possibly driven by the

cyclical pattern of the global economy. Five advanced economies Japan, Germany,

Italy, Spain and UK display relatively stable low-sparse structure across the whole

time. China and Hong Kong exhibit co-movement, indicating the connection between

the two economies, though Hong Kong given its higher level of globalization appears
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Fig. 10.3 Loading matrix: Apr 1999–Feb 2001

in more factors than China across all periods. The emerging economies of China,

India and Indonesia show constant increasing in the number of participated factors

along with their increased connection to the global economy especially in the fast

growing export business.

Figures 10.3, 10.4, 10.5, 10.6 and 10.7 provides details of the estimated loading

matrices over the five time periods. In each plot, we display the loadings of an

independent factor with respect to the economies. Zero elements are colored in white.

The loading matrix is interpretable. In the pre-Dot Com bubble period, the advanced

economies including Japan, Germany, Ireland, Spain and UK participate the most

number of factors, while the emerging economies such as China, Indonesia, Russia

and Brazil are only related to a few factors. China, for example, only participates

in one factor and moreover it is the only element of the factor, implying the closed

market of China in the early time. During 1999 to 2001, most defaults in China

happened due to the reforming of the state-owned enterprises, which were less likely

affected or influenced by the global economy. On the contrary, Japan participates

more than 10 factors implying its close connection to the global financial market.

In the recent, the sparse inequality between the advanced and emerging economies

decreases from period to period, see Fig. 10.8.
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Fig. 10.4 Loading Matrix: Mar 2001–Nov 2001(Dot Com bubble)

Fig. 10.5 Loading Matrix: Dec 2001–Nov 2007
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Fig. 10.6 Loading Matrix: Dec 2007–Jun 2009(Sub prime crisis)

Fig. 10.7 Loading Matrix: Jul 2009–Dec 2013



10 Penalized Independent Factor 203

Fig. 10.8 Histogram of average number of factors participated by emerging economies and

advanced economies across different period and overall

10.6 Conclusion

We propose the PIF method to transform the observed multivariate correlated vari-

ables into independent factors with a sparse loading matrix. We derive the consis-

tency and convergence rate of the sparse loading matrix estimator. Based on the

NIG distributional assumption, the estimation is done with a two step ML estimation

algorithm by iterating NIG parameter updating and sparse loading matrix estima-

tion. The optimal penalty parameter is chosen via minimizing BIC. We compare

the performance of PIF with two alternatives, ICA and NIG-ICA in simulation. The

results show the proposed PIF has good performance compared with the conven-

tional ICA and NIG-ICA in both the loading matrix estimation and factor recovery.

The estimation accuracy is much improved due to the imposing of NIG distribution.

Furthermore, by adopting the SCAD penalty function in PIF, the estimation accuracy

is further improved with sparse structure. Moreover, the optimal penalty parameter

is reasonably selected by minimizing BIC. The performance of PIF is consistently

better with respect to different level of sparse structure and dimensionality of the

loading matrix. We implement the PIF to sovereign default probability using CVI

data maintained at Credit Research Initiative, Risk Management Institute, National

University of Singapore. The estimated loading matrix displays significant sparse

structure. For example, China in the pre-Dot Com Bubble period only participates

in one factor and is the only element, implying the independence of China’s closed

market and the global economy. The proposed model can be easily applied to other

high-dimensional data.
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Appendix

Proof of Theorem 1

Proof The explicit form of the density function g j is not required, as long as the

two conditions are fulfilled. Under condition C1 and C2, Equation ‖B̂ − B‖ =
OP(n−1/2 + an) is equivalent to proof that for any given ǫ > 0, there exist a

large C s.t.

P{ sup
‖u‖=C

Q(B + αnu) < Q(B)} ≥ 1 − ǫ (10.11)

where Q(B) is the penalized likelihood and u is a p-by-p matrix.

Let Dn(u) = Q(B + αnu) − Q(B)

Iu(B) = −E(tr(∇B tr(∇ 1
n l(B)⊤u)⊤u)) = −E(tr(∇Bdu

1
n l(B)⊤u)) > 0 for any

y ∈ R p∗p based on condition (B)

If Dn(u) < 0 by choosing a sufficiently large C, then the proof is done.

D(u) = l(B + αnu) − l(B) − n
∑

{ρλn (|B jk + αnu jk |) − ρλn (|B jk |)}

≤ l(B + αnu) − l(B) − n
∑

B jk �=0

{ρλn (|B jk + αnu jk |) − ρλn (|B jk |)}

≤ αntr(∇l(B)⊤u) + 1

2
α2

ntr(∇Bdul(B)⊤u){1 + oP(1)}

−
∑

B jk �=0

[nαnρ
′

λn
(|B jk |)sgn(B jk)u jk + nα2

nρ
′′

λn
(|B jk |)u2

jk{1 + o(1)}

≤ αntr(∇l(B)⊤u) − 1

2
nα2

n Iu(B){1 + oP(1)}

−
∑

B jk �=0

[nαnρ
′

λn
(|B jk |)sgn(B jk)u jk + nα2

nρ
′′

λn
(|B jk |)u2

jk{1 + o(1)} (10.12)

The first inequality is because ρλn (0) = 0 and ρλn (β) ≥ 0. The next inequality is

Taylor expansion. Then substitute Iu(B) into the equation.

Base on condition (A), n−1/2tr(∇l(B)⊤u) = OP(1), thus the first term of (8) is of

order OP(n1/2αn) = OP(nα2
n). By choosing a sufficiently large C, the second term

dominates the first term in ‖u‖ = C .

The last term in (8) is bounded by

√
snαnan‖u‖ + nα2

nmax{ρ′′

λn
(|B jk |) : B jk �= 0}‖u‖2 (10.13)
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The first part of (9) is dominated by the second term in (8) when choosing a sufficiently

large C. The second term in (9) is also dominated by the second term in (8) as

max{ρ′′

λn
(|B jk |) : B jk �= 0} → 0

Proof is completed.
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Chapter 11

Term Structure of Loss Cascades
in Portfolio Securitisation

L. Overbeck and C. Wagner

Abstract We report on the term structure of loss cascades generated through port-

folio tranching. The results are based on the analytical form of the loss distribution

for uniform loan portfolios and show that the expected loss of the first loss position

increases roughly linear whereas the expected losses of the more senior tranches

increase exponentially over time depending on the relation between mean default

probability and tranching limits.

11.1 Introduction

Asset Backed Securities (ABS) and related portfolio dependent financial products

like collateralised loan obligations (CLO) are used for several purposes, namely

to transfer and manage credit risk, as a balance sheet management tool in order

to obtain capital relief, and gain liquidity. From the methodological point of view

these structures boil down to a repartition of interest earnings in exchange to loss

burdens among possible investors whereas both are alloted according to the investors

seniority. In the present note we treat only the second point, i.e. the allocation of
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losses through the various tranches and their evolution in time. These structures have

obtained a lot of attraction before and during the credit crisis 2007/08. Many banks

built large trading desks for these structures, called correlation desks. In analogy

to the volatility trading desks based on Black-Scholes model and its extension, the

correlation desks were trading “implied correlation” which were based on the “base

correlation approach” (cf. Li (2000), McGinty and Ahluwalia (2004) or Bluhm and

Overbeck (2006)). This is a simplified default time model with a uniform Gaussian

copula. For our focus, the timing of aggregate losses, we do not model the default

time of the single entities in the portfolio, but model for each time step the aggregate

loss in the portfolio. This is in some aspects a simple top-down approach, which is

a more recent stream of modelling for structured products (cf. e.g. Sidenius et al.

(2008), Bennani (2005), Schönbucher (2005) and Filipovic et al. (2011)). In the

present chapter we assume a uniform portfolio and use loss distributions which are

available in analytic form. The main result of the paper is that even is this simplified

approach, the fact that losses are back loaded in senior tranche. This made it plausible

that the down-rating in the credit crisis was especially severe on senior tranches. Also

compared to migration behaviour of well rated counterparties, well rated tranches

will migrate in a more non-linear way. Most of the downward migration will come

and the end of the lifte-time of the transaction.

11.2 Loss Distribution of Uniform Portfolio

It is well known (cf. Vasicek (1987) or Bluhm et al. (2010)) that for a uniform

portfolio of m loans, i.e. equal exposure 1/m, equal default probability p and equal

pairwise asset correlation ρ, the limiting distribution for m −→ ∞ is the so called

normal inverse distribution NID(p, ρ) (The underlying asset returns in this model are

assumed to be normal distributed.). The distribution of the portfolio losses 0 ≤ x ≤ 1

is given by the cumulative distribution function

NID(x, p, ρ) = N

{

1
√

ρ

[

√

1 − ρN−1(x) − N−1(p)

]

}

(11.1)

and its density

φ(x, p, ρ) =

√

1 − ρ

ρ
exp

{

−
1

2ρ

{

(1 − 2ρ)

[

N−1(x)

]2
− 2

√

1 − ρN−1(x)N−1(p) +
[

N−1(p)

]2
}}

(11.2)

with 0 < p, ρ < 1, with mean p and variance σ 2 = N2

(

N−1(p), N−1(p); ρ
)

− p2,

where N denotes the standard normal distribution function and N2(x, y; ρ) denotes

the bivariate normal distribution function with zero expectation vector and covariance

matrix showing units on the diagonal and ρ off the diagonal.
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11.3 Time Slicing

Now, let us observe a portfolio and its losses on a discrete time grid 0 = t0 < t1 <

t2 · · · < tn−1 < tn . Denote X i the relative portfolio loss (relative to the remaining

exposure) during time step i , then the absolute loss at i , assuming the balance at time

0 to be 1, is

Yi =
i−1
∏

j=1

(1 − X j ) X i for i = 1, . . . n , (11.3)

and accumulates over time to

Ỹi =
i

∑

j=1

Yi . (11.4)

Suppose further that our portfolio and the residues after losses can be considered as

being uniform with possible changes only being reflected by time dependent portfolio

parameters, pi , ρi , i = 1 . . . n. We can then draw the random variable X i in step i

from the normal inverse distribution

X i ∼ NID(x, pi , ρi ) (11.5)

to obtain the absolut loss Yi . The respective density function can in principle be

calculated by product folding, but it does not seem to be possible to state the results

in a closed form.

We therefore resort to Monte Carlo simulations of the loss distribution, whereby

the random variables are generated according to Eq. (11.5). For this, we first take

uniformly distributed random variables Z ∼ U (0, 1) and transform with

x = NID−1(z, pi , ρi ) = N

(

1
√

1 − ρ

(

N−1(p) − √
ρ z

)

)

.

11.4 Loss Cascades

As already mentioned in the introduction during securitization transactions the port-

folio losses L are allocated subsequently to various tranches according to their senior-

ity, i.e. investor 1 holds for losses up to α1%, investor 2 for remaining losses but

smaller than α2%, and so on. In mathematical notation this reads

L i = (L − αi−1)
+ ∧ (αi − αi−1)
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where 0 ≤ α0 < α1 < · · · < αk are the boundaries of the tranches and L i denotes

the loss to be borne by tranche i . Thus, tranches are ‘served’ in cascades, if one

tranche has overflowed further losses are allocated to the next senior tranche. The

first tranche is usually kept by the issuer and is called first loss position (FLP). The

mezzanine tranches are usually brought to the market as notes and the senior tranche

is securitized by a credit default swap. For the rating and spreads of the various

tranches an interesting quantity is the expected loss per tranche

E L i =
∫

(x − αi−1)
+ ∧ (αi − αi−1)

αi − αi−1

d f (x) , (11.6)

with f (x) being the probability measure of some loss distribution.

11.5 Results

Table 11.1 shows the results of a Monte Carlo simulation with 106 simulations of a

sequence of normal inverse distributed portfolio losses X i , i = 1, . . . , 7, Eq. (11.5),

with constant portfolio parameters p = 0.0026 and ρ = 0.17. The first column

denotes the year, the second the respective (forward) default rate p and the third

and fourth column give the mean and the standard deviation of the accumulated loss,

E L and U L . The remaining columns report on the accumulated expected loss per

tranche, where some typical boundaries have been chosen. All quantities increase

monotoneously, but the more interesting result can be seen in Fig. 11.1 (linear and

logarithmic plot). Whereas the expected loss of the first tranche increases linearly

(scaled on the right axis in the linear plot) the ELs of the other tranches increase

exponentially over the years. In Fig. 11.2 we attempt a direct comparison of the

default-probability term structure for the tranches [2.4 − 3.9%], [3.9 − 6.5%] and

[6.5 − 9%] with respective corporate zero bonds (calibration based on rating reports

of Standard & Poor’s and Moody’s Investors Services, Moody (2001). For this, we

Table 11.1 Vasicek (normal inverse) distribution

EL per tranche

Year p EL UL 0–2.4% 2.4–3.9% 3.9–6.5% 6.5–9% 9–11.5% 11.5–100%

1 0.0026 0.002593 0.004588 0.104352 0.004135 0.000830 0.000157 0.000041 0.000001

2 0.0026 0.005186 0.006491 0.206350 0.010987 0.002129 0.000389 0.000110 0.000001

3 0.0026 0.007771 0.007921 0.304995 0.021439 0.004068 0.000683 0.000177 0.000002

4 0.0026 0.010356 0.009126 0.399452 0.036819 0.006922 0.001108 0.000261 0.000003

5 0.0026 0.012934 0.010181 0.488493 0.058068 0.010884 0.001691 0.000392 0.000004

6 0.0026 0.015500 0.011127 0.570866 0.086047 0.016401 0.002502 0.000559 0.000006

7 0.0026 0.018059 0.011991 0.645940 0.121363 0.023847 0.003575 0.000777 0.000008



11 Term Structure of Loss Cascades in Portfolio Securitisation 211

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1 2 3 4 5 6 7

year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EL UL

2.4-3.9% 3.9-6.5%

6.5-9% 9-11.5%

11.5-100% 0-2.4%

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 3 4 5 6 7

year

EL 0-2.4% 2.4-3.9% 3.9-6.5%

6.5-9% 9-11.5% 11.5-100%

(a)

(b)

Fig. 11.1 Term structure of expected losses in tranches with p = 0.0026, ρ = 0.17, linear and

logarithmic scale. Note that in the upper plot EL[0 − 2.4%] scales with the right axis
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Fig. 11.2 Term structure of expected losses in tranches [2.4 − 3.9%], [3.9 − 6.5%], [6.5 − 9%],
with p = 0.0026, ρ = 0.17, and corporate zero bonds for comparison
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either try to match ‘one-year’ expected loss or the accumulated ‘7-years’ expected

loss per tranche to the respective default probabilities assigned by Moody’s to a

suitable corporate bond.

Since the first loss position is usually kept by the issuer he can expect linear

increasing loss burdens over time whereas the investors buying the notes have to

anticipate exponentially increasing loss burdens. This is different to the term structure

of the expected loss for similar rated corporate bonds, these show a less convex

increase in expected loss during time. The term structure of securitized tranches

might therefore serve a non-linear risk appetite on the investors side. We can now

estimate the respective rates ri in tranche i given to the investors by calculating the

net present value of the expected cash flows according to

n−1
∑

j=1

(1 − E L
j

i )ri
∏ j

l=1(1 + zl)
+

(1 − E Ln
i )(1 + ri )

∏n
l=1(1 + zl)

= 1 , (11.7)

where E L
j

i denotes the accumulated expected loss in tranche i up to year j and zl

represents the risk free zero forward rate.

Using Eq. (11.7) and a constant risk free rate z = zl = 5.0% we arrive at:

tranche 0–2.4% 2.4–3.9% 3.9–6.5% 6.5–9% 9–11.5% 11.5–100%

rate 20.560% 6.794% 5.339% 5.051% 5.011% 5.000%

In reality, the spreads given to investors are considerably higher. Clearly, this is

again the discussion of real-world versus risk-neutral probabilities. But one justifi-

cation for higher risk neutral spreads, besides liquidity or other additional risks, can

be found in Fig. 11.3 where the ratios of unexpected to expected loss, U L/E L , for

the whole portfolio (total) and all tranches are shown. All ratios decrease in time, but

the more interesting result is that they differ considerably in orders of magnitude.

Whereas the whole portfolio and the first loss piece [0 − 2.4%] yield a ratio of order

one already the second tranche [2.4 − 3.9%] exhibits a ratio of order 10 and all more

senior ratios increase roughly by a factor of two. This means that the variation of the

losses around the expected value is much higher for the investors tranches than for

the first loss position and requires an additional risk premium.

11.5.1 Other Loss Distributions

Since the tail behavior of loan loss distributions is a rather critical part in risk consid-

erations we also experiment with other possible distributions. The following com-

parison is based on an EL/UL match, i.e. we choose the parameters such that the first

two moments match to the ones obtained from the normal inverse distribution.
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Fig. 11.3 Term structure of ratio UL/EL for the whole portfolio (total) and the tranches with

p = 0.0026, ρ = 0.17

Beta Distribution

Choosing the parameters for the Beta-distribution with density

fα,β(x) =
Ŵ(α + β)

Ŵ(α)Ŵ(β)
xα−1(1 − x)β−1 , 0 ≤ x ≤ 1 , (11.8)
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Fig. 11.4 Term structure of expected losses in tranches where the parameters of Beta-distribution

(α = 0.315878, β = 121.176) are chosen such that EL and UL match to the previous example

(Vasicek-distribution with p = 0.0026, ρ = 0.17). Note that in the upper plot EL[0 − 2.4%] scales

with the right axis

Table 11.2 Beta distribution

EL per tranche

Year EL UL 0–2.4% 2.4–3.9% 3.9–6.5% 6.5–9% 9–11.5% 11.5–100%

1 0.002569 0.004512 0.105027 0.002851 0.000209 4.48E-06 0 0

2 0.005176 0.006450 0.208788 0.009512 0.00085 2.14E-05 0 0

3 0.007789 0.007294 0.308685 0.021589 0.002135 6.06E-05 0 0

4 0.010391 0.009154 0.402956 0.039937 0.004462 0.000185 1.62E-06 0

5 0.012955 0.010195 0.489843 0.065128 0.008176 0.000377 2.56E-06 0

6 0.015510 0.011122 0.569401 0.098164 0.013608 0.000714 8.69E-06 0

7 0.018078 0.011989 0.641583 0.138913 0.021659 0.001298 2.98E-05 0

mean μB = α
α+β

and variance σB = αβ

(α+β+1)(α+β)2 as α = 0.315878, β = 121.176

leads to a good EL/UL match with the Vasicek distribution under p = 0.0026, ρ =
0.17. Table 11.2 and Fig. 11.4 show the result where the yearly portfolio loss X i is

now drawn according to Eq. (11.8).

Negative Binomial Distribution

Another prominent loss distribution in extreme event statistics is the Negative-

Binomial distribution with frequency function
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P[Loss = n] = fα,β(n) =
Ŵ(α + n)

n!Ŵ(α)

(

1 −
β

1 + β

)α (

β

1 + β

)n

(11.9)

with mean μN B = αβ and variance σ 2
N B = αβ(1 + β). Note that the Negative

Binomial distribution can be constructed as a composition of a Poisson distribution

conditional on Gamma distributed intensities � see e.g. Rice (1995), for a motivation

in credit risk management see CreditRisk+ (1997). The respective parameters α, β

can then be found by matching first and second moment with the normal inverse

distribution (Sect. 11.2) under the constraint

μN B

m
= p and

σ 2
N B

m2
= σ 2 (m sufficiently large).

Choosing m = 106 yields a fairly good approximation of the corresponding percent-

age loss, i.e. Loss/m, since the probabilities P
[

Loss = k
]

are negligible for k ≥ 106

and results in α = 0.3193 and β = 8.1416 × 103. Table 11.2 shows the results for

the different tranches (Table 11.3). The expected (EL) loss, the unexpected loss (UL)

and the expected loss in the first tranche [0 − 2.4%] match pretty well for all three

distributions. As we move further into the tails to higher tranches, see also Fig. 11.5,

we observe an increasing difference in the term structure between normal inverse

respectively Beta-/Negative-Binomial distribution reflecting the different ‘fatness’

of tails, see especially tranche [6 − 9%]. Due to the very asymmetric and ‘extreme

event’-like behavior of credit loss, we think that the normal inverse distribution

more truthfully reflects the ‘loss reality’ (Bluhm et al. (2010)). Surprisingly, the term

structure of beta-distribution and negative binomial distribution are fairly equal. For

further investigation we generated a q-q-plot (Fig. 11.7) for both distributions with

matched first two moments. Remember that in case of the Negativ-Binomial Distri-

bution the discrete losses n ∈ N0 have to be divided by some large number m (For

Table 11.3 Negative Binomial distribution

EL per tranche

Year EL UL 0–2.4% 2.4–3.9% 3.9–6.5% 6.5–9% 9–11.5% 11.5–100%

1 0.002587 0.004581 0.105659 0.003039 0.000205 0.000010 0.00E+00 0.00E+00

2 0.005197 0.006476 0.209482 0.009744 0.000864 0.000017 0.00E+00 0.00E+00

3 0.007777 0.007932 0.308187 0.021358 0.002205 0.000091 3.46E-06 0.00E+00

4 0.010356 0.009115 0.402161 0.038983 0.004387 0.000225 4.36E-06 0.00E+00

5 0.012926 0.010175 0.489310 0.063951 0.008158 0.000425 2.76E-05 0.00E+00

6 0.015511 0.011120 0.569918 0.096979 0.013770 0.000770 4.97E-05 0.00E+00

7 0.018083 0.011988 0.642122 0.138027 0.021825 0.001309 7.55E-05 0.00E+00
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Fig. 11.5 Comparison of term structures of expected losses in tranches two, three and four with

different underlying loss distributions under the constraint of matching the first two moments
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the plot we chose m = 1000 whichresults in α = 0.323278 and β = 80.4258.). The

q-q-plot shows cummulative probabilities up to 99.995% and is well on the diagonal.

Only in the right upper corner the points begin to fall below the diagonal, but this

clearly depends on the cut-off m. These coinciding probability masses far out into

the tails thus explain the identical tranching results.

11.5.2 Variable Portfolio Quality

Due to credit migrations we are often confronted with variable portfolio quality

during the term of the transaction. In the following we investigate the consequences

of two extreme cases, i.e. strictly deteriorating (back loaded) and strictly improving

(front loaded) quality on our tranching structure.

Deteriorating Portfolio

A variable portfolio quality can represented through different one-year default prob-

abilities, thus we simply choose a sequence of increasing ‘forward’ default probabil-

ities p as in Table 11.4. The corresponding plots are shown in Fig. 11.6a. A compari-

son with the Table 11.1 resp. Figure 11.1 shows that the slopes of the EL-per-tranche

curves over the years increases as expected. Only the first loss position flattens with

year five since the first tranche begins to fill up (Fig. 11.7).

Improving Portfolio

Conversely, we can represent an improving portfolio quality by decreasing ‘forward’

yearly default probabilities, Table 11.5. The plot in Fig. 11.6b depicts again that the

cumulative expected loss of the first loss position increases less than linear. The

reason is that now the upper limit of the first tranche is small compared to the high

default probabilities in the first years, i.e. again the first tranche fills up rather quickly

and losses are passed to the next higher tranche.

Table 11.4 Increasing default probability

EL per tranche

Year p

(forward)

EL UL 0–2.4% 2.4–3.9% 3.9–6.5% 6.5–9% 9–11.5% 11.5–100%

1 0.0026 0.002593 0.004579 0.104369 0.004101 0.000831 0.000147 0.000039 0.000001

2 0.0036 0.006178 0.007552 0.241895 0.016947 0.003589 0.000685 0.000200 0.000004

3 0.0043 0.010451 0.010198 0.393470 0.045190 0.010055 0.001928 0.000516 0.000008

4 0.0048 0.015207 0.012650 0.542116 0.096050 0.023047 0.004522 0.001182 0.000016

5 0.0051 0.020238 0.014826 0.673930 0.172279 0.044946 0.009036 0.002325 0.000030

6 0.0053 0.025426 0.016816 0.780726 0.271508 0.078663 0.016656 0.004250 0.000054

7 0.0054 0.030681 0.018618 0.860469 0.386342 0.125166 0.028539 0.007366 0.000094
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Fig. 11.6 Expected loss in tranches for a portfolio with deteriorating quality a and improving

quality b. The dashed lines scale with the right axis, the solid lines scale with the left axis

Fig. 11.7 q-q-plot for Beta-
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Distribution under the
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two moments. The

Negativ-Binomial

Distribution is rescaled to

[0, 1] via a division by
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Table 11.5 Decreasing default probability

EL per tranche

Year p

(forward)

EL UL 0–2.4% 2.4–3.9% 3.9–6.5% 6.5–9% 9–11.5% 11.5–100%

1 0.0060 0.005992 0.006269 0.241622 0.010208 0.001379 0.000144 2.31E-05 1.27E-07

2 0.0050 0.010961 0.008220 0.431596 0.032250 0.004144 0.000389 6.05E-05 3.00E-07

3 0.0043 0.015214 0.009431 0.580569 0.068669 0.008830 0.000719 9.70E-05 5.02E-07

4 0.0039 0.019060 0.010333 0.698890 0.121829 0.016286 0.001245 1.47E-04 6.63E-07

5 0.0036 0.022595 0.011046 0.790304 0.190679 0.027340 0.002020 2.25E-04 9.83E-07

6 0.0033 0.025819 0.011616 0.857477 0.270135 0.042336 0.003105 3.23E-04 1.39E-06

7 0.0032 0.028936 0.012125 0.907148 0.359962 0.062859 0.004687 4.54E-04 1.86E-06

11.6 Conclusion

We have investigated the term structure of loss cascades in a tranched portfolio struc-

ture, commonly found in loan portfolio securitisation. The yearly loss is first sim-

ulated via a normal inverse distribution. The resulting expected losses per tranche

increase roughly linear for the first loss position and exponential for the higher

tranches. We show how to derive a corresponding rating for each tranche, first by

comparison with corporate zero bonds, and second by calculating the spreads repre-

senting the expected default risk. The spreads of tranches implied by our analysis of

a securitized portfolio show a more convex term structure than for comparable cor-

porate bonds. Next, using other possible loss distribution (Beta-/Negative-Binomial

distribution) we find that the expected losses for tranches higher than the first depend

heavily on the chosen distribution. The respective parameters have been calibrated

by matching the first two moments and reveal again the tail-‘fatness’ of the normal

inverse distribution compared to the other two. It is well known (eg. Bluhm et al.

(2010)) that the tail behavior of the normal inverse distribution captures the extreme

type behavior of credit losses better than the other two distributions. Interestingly,

Beta- and Negativ-Binomial distribution yield coinciding results. A brief look at the

q-q-plot reveals that both distributions seem to coincide as used above. Eventually,

we have a brief look on how variable portfolio quality can be treated in our context

and how tranching limits and yearly default probabilities interact in the term structure

of loss cascades.
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Chapter 12

Credit Rating Score Analysis

Wolfgang Karl Härdle, K.F. Phoon and D.K.C. Lee

Abstract We analyse a sample of funds and other securities each assigned a total

rating score by an unknown expert entity. The scores are based on a number of risk

and complexity factors, each assigned a category (factor score) of Low, Medium,

or High by the expert entity. A principal component analysis of the data reveals

that based on the chosen risk factors alone we cannot identify a single underlying

latent source of risk in the data. Conversely, the chosen complexity factors are clearly

related to one or two underlying sources of complexity. For the sample we find a clear

positive relation between the first principal component and the total expert score. An

attempt to match the securities’ expert score by linear projection of their individual

factor scores yields a best case correlation between expert score and projection of

0.9952. However, the sum of squared differences is, at 46.5552, still notable.
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12.1 Introduction

We are provided with a sample of n = 100 funds and other securities that have been

assigned a rating score by an unknown expert entity – the expert (rating) score in

the following. We assume the rating score to depend on a set of six risk factors

and five complexity factors, each modelled as random variables on an ordinal scale

of Low, Medium, High. The risk factors are volatility, liquidity, credit rating, du-

ration/cash flow, leverage, and diversification degree. The complexity factors com-

prise of the number of structural layers, expansiveness of derivatives, availability and

known pricing models, number of return outcome scenarios, and transparency/ease

of understanding. In addition to the rating score, we know the category (i.e. Low,

Medium, High) assigned to each factor for any given security included in the sample.

Figures 12.1 and 12.2 show histograms for each of the risk and complexity factors,

respectively.

To get a better impression regarding the relation between individual securities

in the sample, we perform cluster analyses based on (i) only the risk factors, (ii)

only the complexity factors, and (iii) both risk and complexity factors in the sample.

In particular, we apply the Ward clustering algorithm using an Euclidean distance

matrix. This algorithm is chosen to ensure that individual clusters are as homogenous

as possible. However, other algorithms such as the single linkage or complete linkage
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algorithms can be applied as well Härdle and Simar (2015). The results are depicted

in Fig. 12.3.

12.2 Principal Components Analysis of Factor Scores

Principal components analysis (PCA) allows for the identification of uncorre-

lated latent factors that drive the variation in a sample of multivariate random

variables. We consider a random variable Y = (Y1, . . . , Y j , . . . , Yk)
⊺ with Y j ∈

{Low, Medium, High}, 1 ≤ j ≤ k. Y represents a vector of the risk and complexity

categories assigned to a security i by the expert entity. To later be able to perform PCA

on our sample we assign a discrete scale {1, 2, 3} to each Y j yielding a random vari-

able X = (X1, . . . , X j , . . . , Xk)
⊺ with X j ∈ {1, 2, 3}, 1 ≤ j ≤ k (i.e. Y j = High

is equivalent to X j = 3). For easier reference let us refer to each of the X j as a factor

score.

Our sample is now represented by a discrete matrix X ∈ {1, 2, 3}n×k , with each

row i representing a security and each column j representing a factor. The element

xi, j is therefore security i’s score for the j-th factor. We still cannot apply PCA to

X directly, however, without violating the basic assumption of normally distributed

continuous random variables made in PCA. To circumvent this issue, we apply a

discrete PCA using the polychoric correlation matrix of the factor scores.
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Fig. 12.3 Dendrograms of cluster analysis. Ward algorithm using Euclidean distances. Clusters

formed below a threshold of 60 are coloured
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Table 12.1 Projection Vector of PC1 Projection vectors for PC1 obtained from the eigendecom-

positions of the polychoric correlation matrices of X Risk , XComp , and X All

X Risk XComp X All

w1 −0.2141 0.3279 −0.1594

w2 0.6013 0.4030 0.4275

w3 0.0905 0.5185 0.1237

w4 0.5106 0.4896 0.2687

w5 0.1308 0.4707 −0.1087

w6 0.5537 0.1166

w7 −0.1929

w8 −0.3142

w9 −0.4440

w10 −0.4553

w11 −0.3722
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Fig. 12.4 Fraction of variance explained by each of the principal components

Just as the cluster analysis, PCA is performed on three sub-samples of X ; X Risk ,

XComp, and X All . The number of columns of X therefore depends on the sub-sample

(i.e. X Risk is 100 × 6, XComp is 100 × 5, and X All is 100 × 11). Table 12.1 shows

the resulting projection vectors for the first principal component (PC), PC1.

One method of analysing the relation between PCs and the underlying sample

is to look at fractions of sample variance explained by each PC. This is possible,

because the sum of PC variances matches the sum of variances of the underlying

random variables in a sample (i.e.
∑k

j=1 V ar [PC j ] =
∑k

j=1 sx j ,x j
). The fraction of

variance explained by each PC can therefore be measured as
V ar [PC j ]∑k
j=1 V ar [PC j ]

. If the

fraction of explained variance for the first one or two PCs is very high, we know

that the underlying random variables are in fact mainly driven by some latent factors

represented by those two PCs. Figure 12.4 depicts the fractions of sample variance

explained by each of the principal components (PCs).
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Fig. 12.5 Correlations of the factors with the first two PCs, based on the PCA of only risk, only

complexity, and both risk and complexity factors. The risk factors are volatility, liquidity, credit

rating, duration/cash flow, leverage, and diversification degree. The complexity factors comprise of

the number of structural layers, expansiveness of derivatives, availability & known pricing models,

number of return outcome scenarios, and transparency/ease of understanding

When only considering risk factors, the sample variance appears to be distributed

fairly evenly among PCs. If we assume risk to be some latent variable that we expect

the risk factors to be proxies of, the finding contradicts this assumption. Instead,

the chosen risk factors appear to proxy for various independent latent factors. The

opposite is true for the group of complexity factors, where the first PC explains more

than 60 percent of the sample variation. All remaining PCs each explain less than 20

percent at the most. This reveals that the chosen complexity factors – at least in large

parts – track the same underlying latent complexity factor. When including both risk

and complexity factors in the PCA, the first PC explains around 40 percent of the

sample variation and the next three or four PCs add another 10 to 20 percent each.
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Fig. 12.6 The first three PCs derived from the PCA of the risk factors plotted against each other

(top left, top right, and bottom left) and the eigenvalues of the polychoric correlation matrix of risk

factors (bottom right)

In Fig. 12.5 we plot the correlation of each of the risk and complexity factors with

the first two PCs for each of the factor sample subsets. Note that only the absolute

correlation value is relevant when interpreting these correlations because PCs are

not determined in their sign. Our results support the previous discussion regarding

the explained sample variance. While the absolute correlation for risk factors with

both PC1 and PC2 range from zero to 1.0 (top left panel), absolute correlations for

complexity factors lie clearly within a range from 0.5 to 1.0 with a strong tendency

towards higher values (top right panel). In the bottom left panel we note the absence

of a clear correlation pattern between factors and the first two PCs. With the exception

of the “number of structural” layers factor all complexity factors maintain a strong

correlation with PC1. Risk factors deviate very clearly from their correlations with

both PCs in the top left panel. Figures 12.6, 12.7, and 12.8 plot the first three PCs
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Fig. 12.7 The first three PCs derived from the PCA of the complexity factors plotted against each

other (top left, top right, and bottom left) and the eigenvalues of the polychoric correlation matrix

of complexity factors (bottom right)

against each other and show the correlation matrix eigenvalues associated with each

principle component.

Finally, we plot the expert score of each security in the sample against its first PC

in Fig. 12.9. As can be seen there is a clear relation between the total score and the

first PC for risk, complexity, and both risk and complexity factors. This relation is

most evident for the latter two groups.
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Fig. 12.8 The first three PCs derived from the PCA of the risk and complexity factors plotted against

each other (top left, top right, and bottom left) and the eigenvalues of the polychoric correlation

matrix of risk and complexity factors (bottom right)

12.2.1 Cross Validation via Leave-One-Out

The PCA results are cross validated by employing a leave-one-out (LOO) procedure.

We compute the first PC for a security i based on weights obtained from a PCA of

the sample excluding security i . In Fig. 12.10 we plot the LOO PCs against their

regular counterparts. Additionally, we define a function

R1 =

n∑

i=1

{
f1(xi ) − f̂1(xi )

}2

, (12.1)
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Fig. 12.9 The first PC from the PCA of risk (top left), complexity (top right), and risk and com-

plexity (bottom left) factor scores plotted against the expert score of the corresponding securities

where f1(xi ) is the first PC for security i resulting from a PCA of the whole sample

and f̂1(xi ) is the first PC for security i computed from the weights of a PCA of the

sample of n − 1 securities (i.e. excluding security i). The values of R1 for the three

samples X Risk , XComp, and X All are 10.0655, 0.0219, and 0.2899, respectively. From

these results we take that the PCA has some stability issues when only considering

risk factors. Otherwise results are stable.



12 Credit Rating Score Analysis 233

10

57

73

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2

PC1 All Securities

P
C

1
 L

e
a
v
e
−O

n
e
−O

u
t

Risk

●●●●●

●

●

●●●●●●●

●

●

●●

●

●

●

●●●●

●

●●●●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●●

●

●

●●

●

●

●

●●●●

●

●●●●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

−4

−2

0

2

−4 −2 0 2

PC1 All Securities

P
C

1
 L

e
a
v
e
−O

n
e
−O

u
t

Complexity

−2.5

0.0

2.5

5.0

−2.5 0.0 2.5 5.0

PC1 All Securities

P
C

1
 L

e
a
v
e
−O

n
e
−O

u
t

All

Fig. 12.10 f̂1(xi ) plotted against f1(xi ) for risk factors (top left), for complexity factors (top right),

for risk and complexity factors (bottom). 10.0655, 0.0219, and 0.2899 in each setup respectively

Outliers are labeled with their security index in the sample

12.3 Adjusted Weighting of Factor Scores

In the following we consider two different applications of adjusting the weights

applied to X . First, we try to find a weighting vector w ∈ R
k such that the projection

xi w for each security i is as close as possible to its known expert score. Second,

we evaluate the maximum distance between the projections of X through randomly

chosen random vectors w.
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12.3.1 Match Expert Score

Given a matrix X1 ∈ {1, 2, 3}n×k , X2 ∈ {1, 3, 5}n×k , or X3 ∈ {1, 4, 9}n×k and again

considering the sub-samples X Risk , XComp, or X All , we can compute a function

R2(X, w) = X w − f, (12.2)

where w is an k × 1 vector of weights and f is an n × 1 vector of expert scores.

From this we derive two optimisation problems (OPs) OP1 and OP2,

ŵOP1
= arg min

wOP1

‖ X wOP1
− f ‖1, (12.3)

and

ŵOP2
= arg min

wOP2

‖ X wOP2
− f ‖2

2, (12.4)

respectively. Table 12.2 shows the optimal weights for both OPs using one of X1, X2,

or X3 and either risk factors, complexity factors, or both risk and complexity factors.

Figures 12.11, 12.12, 12.13, 12.14, 12.15 and 12.16 show the resulting weighted

scores Xŵ plotted against the known expert scores.

As can be seen in our results, the linear approximation of expert scores is hard,

even when using all 11 factors. The sum of squared approximation errors, R∗
2 , in

Table 12.2 is lowest for X1 and the use of all factors. A discrete scale of {1, 2, 3} thus

appears better suited than the alternatives {1, 3, 5} and {1, 4, 9}.

12.3.2 Cross Validation via Leave-One-Out

As with the PCA, we perform a LOO analysis to see how strongly the optimisation

results for (12.4) depend on individual securities (Table 12.3).

We only consider OP2 for X1 because the overall results are best in this specifi-

cation. The results, depicted in Fig. 12.17, are fairly robust against sample modifica-

tions. This is particularly true for X All
1 .

12.3.3 Widest Projection Spread

Given some random k × 1 weighting vector we can compute the maximum spread

between each projection in X w and its nearest neighbour. We define z = X w and

then consider the order statistics of the elements zi of z (i.e. ∀i = 1, . . . , n − 1 :

z(i) ≤ z(i+1)). The maximum spread between all z(i) and their respective nearest
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Table 12.2 Match Expert Score Weights. Optimal (normalised) weights ŵ ∈ R
k , correlations be-

tween A ŵ and f , as well as the optimal target function value R∗
2 (this is the actual target func-

tion and not R2 itself) for OP1 and OP2 using matrices X1 ∈ {1, 2, 3}k×n , X2 ∈ {1, 3, 5}k×n , and

X3 ∈ {1, 4, 9}k×n . The weights have been normalised to unit vectors to facilitate a comparison with

PCA weights and simulation weights

Panel A: Risk factors

X1 X2 X3

OP1 OP2 OP1 OP2 OP1 OP2

ŵ1 0.7773 0.7882 0.8020 0.8123 0.6574 0.7511

ŵ2 −0.2064 −0.1632 −0.1433 −0.0702 0.0750 0.0529

ŵ3 0.0346 0.0289 0.1299 0.1182 0.1069 0.0946

ŵ4 −0.1650 −0.1170 −0.1433 −0.1328 −0.1737 −0.1412

ŵ5 0.4952 0.5499 0.4596 0.5077 0.6352 0.5829

ŵ6 0.2821 0.1876 0.2962 0.2142 0.3424 0.2536

ρA ŵ, f 0.7729 0.8296 0.7562 0.7920 0.6380 0.7664

R∗
2 334.8355 1845.7312 408.8966 2698.5647 487.7317 3924.8506

Panel B: Complexity factors

X1 X2 X3

OP1 OP2 OP1 OP2 OP1 OP2

ŵ1 0.5636 0.5290 0.6732 0.6777 0.5420 0.6216

ŵ2 0.2873 0.3255 0.2891 0.2960 0.3391 0.2848

ŵ3 −0.0136 0.1554 −0.0008 0.0916 0.0947 0.0498

ŵ4 0.5849 0.5154 0.4811 0.3873 0.1521 0.2456

ŵ5 0.5075 0.5695 0.4814 0.5429 0.7477 0.6854

ρA ŵ, f 0.9825 0.9924 0.9745 0.9755 0.9535 0.9515

R∗
2 339.0912 1755.0434 453.0134 3363.2401 677.2657 6798.8500

Panel C: Risk and complexity factors

X1 X2 X3

OP1 OP2 OP1 OP2 OP1 OP2

ŵ1 0.6622 0.6279 0.5914 0.6130 0.3821 0.5261

ŵ2 −0.0003 −0.0284 0.2187 0.1362 0.4382 0.2817

ŵ3 −0.2645 −0.2019 −0.1590 −0.0705 −0.1454 −0.0126

ŵ4 0.1326 0.1535 0.1182 0.1511 0.0754 0.1186

ŵ5 0.2651 0.3006 0.2368 0.2868 0.2879 0.3930

ŵ6 −0.1326 −0.1486 −0.1183 −0.1187 −0.0669 −0.0568

ŵ7 0.2652 0.2960 0.2368 0.2921 0.1633 0.2432

ŵ8 0.2650 0.2776 0.2365 0.2566 0.1853 0.2278

ŵ9 0.1329 0.1695 0.1950 0.2079 0.1391 0.2617

ŵ10 0.3969 0.3551 0.4945 0.3880 0.6406 0.3581

ŵ11 0.2653 0.3296 0.3139 0.3695 0.2390 0.4052

ρA ŵ, f 0.9942 0.9952 0.9768 0.9792 0.9117 0.9513

R∗
2 38.0562 46.5552 91.9700 225.6082 147.5615 589.0314
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Fig. 12.11 The expert score ( f ) plotted against X1 ŵ for OP1. We distinguish between results for

risk factors (top left), complexity factors (top right), and risk and complexity factors (bottom left)

neighbour is then given by

R3(z) =
n−1
max

i

(
z(i+1) − z(i)

)
. (12.5)

To examine the influence of the weighting vector w on the maximum projection

spread we generate 1000 k × 1 uniform random vectors (w ∼ U(−1, 1)k). These

vectors are then scaled to unit vectors.

Figure 12.18 shows the resulting 1000 simulated maximum spreads. The mean

maximum spreads for the risk, complexity, and both risk and complexity cases are

s̄ Risk = 0.6807, s̄Compl = 0.74725, s̄ All = 0.6904. A box plot of the results is shown

in Fig. 12.19.
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Fig. 12.12 The expert score ( f ) plotted against X2 ŵ for OP1. We distinguish between results for

risk factors (top left), complexity factors (top right), and risk and complexity factors (bottom left)
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Fig. 12.13 The expert score ( f ) plotted against X3 ŵ for OP1. We distinguish between results for

risk factors (top left), complexity factors (top right), and risk and complexity factors (bottom left)
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E
x
p

e
rt

 S
c
o

re

Complexity

0

10

20

30

40

50

0 10 20 30 40 50

X1 ŵ
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Fig. 12.14 The expert score ( f ) plotted against X1 ŵ for OP2. We distinguish between results for

risk factors (top left), complexity factors (top right), and risk and complexity factors (bottom left)
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Fig. 12.15 The expert score ( f ) plotted against X2 ŵ for OP2. We distinguish between results for

risk factors (top left), complexity factors (top right), and risk and complexity factors (bottom left)
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Fig. 12.16 The expert score ( f ) plotted against X3 ŵ for OP2. We distinguish between results for

risk factors (top left), complexity factors (top right), and risk and complexity factors (bottom left)
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Table 12.3 Top Ten Mean

Maximum Spread Simulation

Weights The mean of the

weighting vectors projecting

the ten largest spreads from

the original score matrix. The

mean vectors for X Risk ,

XComp , and X All are

normalised to unit vectors

X Risk XComp X All

w1 −0.9275 0.5161 0.4319

w2 0.1824 0.4141 0.0833

w3 −0.2483 0.3300 0.0257

w4 0.1164 −0.3030 −0.2453

w5 0.0130 0.6013 −0.3244

w6 0.1764 −0.2807

w7 −0.1371

w8 −0.3083

w9 0.1572

w10 −0.5835

w11 −0.2874
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Fig. 12.17 X1 ŵL O O plotted against X1 ŵ for OP2. We distinguish between results for risk factors

(top left), complexity factors (top right), and risk and complexity factors (bottom left)



12 Credit Rating Score Analysis 243

1

2

3

0 250 500 750 1000

Run

M
a

x
im

u
m

 S
p

re
a

d
Risk

●●●●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●●
●●
●

●

●

●●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●
●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●●●
●
●
●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●●
●●
●

●

●

●●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●
●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●●●
●
●
●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●0.5

1.0

1.5

0 250 500 750 1000

Run

M
a

x
im

u
m

 S
p

re
a

d

Complexity

1

2

0 250 500 750 1000

Run

M
a

x
im

u
m

 S
p

re
a

d

All

Fig. 12.18 Maximum spread among projections X1 w for 1000 randomly chosen w



244 W.K. Härdle et al.

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●

●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

1

2

3

All Complexity Risk

FactorGroup

M
a
x
S

p
re

a
d

Fig. 12.19 Box plot of maximum spreads among projections X1 w for 1000 randomly chosen w

12.4 Conclusion

We can summarise our results in a few key points:

1. The choice of risk factors, as the PCA has revealed, does not seem to proxy for

a single latent source of risk. The opposite is true for the choice of complexity

factors.

2. Overall there is a clear positive relation between the first PC of the full PCA,

involving all factors, and the expert score of a security as shown in Fig. 12.9.

3. Approximation of the total expert scores through linear projection of the score

matrix is possible, but not perfect. We obtain best results by using a score scale

of {1, 2, 3} and applying the L2 norm during optimisation.
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Chapter 13

Copulae in High Dimensions:

An Introduction

Ostap Okhrin, Alexander Ristig and Ya-Fei Xu

Abstract This paper reviews the latest proceeding of research in high dimensional

copulas. At the beginning the bivariate copulas are given as a fundamental followed

with the multivariate copulas which are the concentration of the paper. In multivari-

ate copula sections, the hierarchical Archimedean copula, the factor copula and vine

copula are introduced. In the following section the estimation methods for multivari-

ate copulas including parametric and nonparametric routines, are presented. Also

the introduction of the goodness of fit tests in copula context is given. An empirical

study of multivariate copulas in risk management is performed thereafter.

13.1 Introduction

Researches of dependence modeling were burgeoning during the last decade. The

traditional approaches that concentrate on the elliptical distributions such as Gaussian

models are giving way to copula-based models. Albeit these Gaussian models some-

times own the convenience in model construction and computation, yet an abundant

amount of empirical evidences do not support the underlying assumptions. De facto,

shortcomings in the elliptical and especially Gaussian family are mainly in lack

of asymmetrical and tail dependence which have been deeply discussed in numer-
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ous papers. Furthermore and of great importance, margins of elliptical distributions

belong to the same elliptical family.

The seminal result of Sklar (1959) provides a partial solution to these problems. It

allows to separate the marginal distributions from the dependency structure between

the random variables. Since the theory on modeling and estimation of univariate dis-

tributions is well established compared to the multivariate case, the initial problem

reduces to modeling the dependency by copulas. In particular, this approach dramat-

ically widens the class of candidate distributions and allows a simple construction

of distributions with less parameters than imposed by elliptical models.

In the beginning of the copula study, researches were mainly focused on the bivari-

ate dependence but as time passes problems raised by the financial, technological,

biological industries dictated the rules of further developments, namely moves to

higher dimensions. Nonetheless, it has been realized as clearly stated in Mai and

Scherer (2013), that “the step from one-dimensional modeling is clearly large. But,

unfortunately, the step from two to three (or even more) dimensions is not a bit

smaller”.

Numerous steps are accomplished in order to contribute to research on high-

dimensional modeling approaches and these main branches have been established:

pair copula construction, see Joe (1996), Bedford and Cooke (2001), Bedford and

Cooke (2002) and Kurowicka and Cooke (2006), hierarchical Archimedean copula,

see Savu and Trede (2010), Hofert (2011) and Okhrin et al. (2013a), and factor

copula, see Krupskii and Joe (2013) and Oh and Patton (2015).

This chapter attempts at discussing such non-standard multivariate copula models

and the subsequent sections are organized as follows. We introduce bivariate copulae

and review modern multivariate copula families. Then, corresponding estimation

methods and goodness of fit tests are presented. Last but not least, we study a risk

management topic empirically.

13.2 Bivariate Copula

Modeling the dependence between only two random variables using copulae is the

subject of this section. There are several equivalent definitions of the copula function.

We define it as a bivariate distribution function and the simplest one is as follows:

Definition 13.1 The copula C(u, v) is a bivariate distribution with margins being

U [0, 1].

Term copula was mentioned for the first time in the seminal result of Sklar (1959). The

separation of the bivariate distribution function into the copula function and margins

is formally stated in the subsequent theorem. One possible proof is presented in

Nelsen (2006), for others we refer to Durante et al. (2012), Durante et al. (2013) and

Durante and Sempi (2005)
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Theorem 13.1 Let F be a bivariate distribution function with margins F1 and F2,

then there exists a copula C such that

F(x1, x2) = C{F1(x1), F2(x2)}, x1, x2 ∈ R = R ∪ {∞,−∞}. (13.1)

If F1 and F2 are continuous then C is unique. Otherwise C is uniquely determined

on F1(R) × F2(R).

Conversely, if C is a copula and F1 and F2 are univariate distribution functions,

then function F in (13.1) is a bivariate distribution function with margins F1 and F2.

As indicated above, the theorem allows decomposing any continuous bivariate distri-

bution into its marginal distributions and the dependency structure. Since by defini-

tion, the latter is the copula function with uniform margins, it follows that the copula

density can be determined in the usual way

c(u1, u2) = ∂2C(u1, u2)

∂u1∂u2

, u1, u2 ∈ [0, 1]. (13.2)

Being armed with the Theorem 13.1 and (13.2), the density function f (·) of the

bivariate distribution F can be rewritten in terms of copula

f (x1, x2) = c{F1(x1), F2(x2)} f1(x1) f2(x2), x1, x2 ∈ R.

A very important property of copulae is given in Nelsen (2006) stating that copulae

are invariant under strictly monotone transformations of margins. Seen from this

angle, copulae capture only those features of the dependency which are invariant

under increasing transformations.

13.2.1 Copula Families

Naturally, there is an infinite number of different copula functions satisfying the prop-

erties of Definition 13.1 and the number of them being deeply studied is expand-

ing. In this section, we discuss three copula classes namely simple, elliptical and

Archimedean copulae.

Simplest Copulae

To form basic intuition for copula functions, we first study some extreme special

cases, like stochastically independent, perfect positive or negative dependent random

variables. According to Theorem 13.1, the copula of two stochastically independent

random variables X1 and X2 is given by the product (independence) copula defined as

�(u1, u2) = u1u2, u1, u2 ∈ [0, 1].
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The contour diagrams of the bivariate density function with product copula and either

Gaussian or t3-distributed margins are given in Fig. 13.1. Two additional extremes are

the lower and upper Fréchet–Hoeffding bounds. They represent the perfect negative

and positive dependence of two random variables respectively

W (u1, u2) = max(0, u1 + u2 − 1) and M(u1, u2) = min(u1, u2), u1, u2 ∈ [0, 1].

If C = W and (X1, X2) ∼ C(F1, F2) then X2 is a decreasing function of X1. Sim-

ilarly, if C = M , then X2 is an increasing function of X1. In general, we can argue

that an arbitrary copula which represents some dependency structure lies between

these two bounds, i.e.

W (u1, u2) ≤ C(u1, u2) ≤ M(u1, u2), u1, u2 ∈ [0, 1].

The bounds serve as benchmarks for the evaluation of the dependency magnitude.

There are numerous techniques for building new copulae by mixing at least two

of the presented simplest copula. For example, copula families B11 and B12, see

Joe (1997), arise as a combination of the upper Fréchet–Hoeffding bound and the

product copula

CB11(u1, u2, θ) = θM(u1, u2) + (1 − θ)�(u1, u2) = θ min{u1, u2} + (1 − θ)u1u2,

CB12(u1, u2, θ) = M(u1, u2)
θ�(u1, u2)

1−θ = (min{u1, u2})θ(u1u2)
1−θ, u1, u2, θ ∈ [0, 1].

Family B11 builds on the fact that every convex combination of copulas is a copula

as well. Family B12 is also known as Spearman or Cuadras–Augé copula, which is

a weighted geometric mean of the upper Fréchet–Hoeffding bound and the product

copula. Further generalization is done by using power mean over the upper Fréchet–

Hoeffding bound and the product copula

C p(u1, u2, θ1, θ2) = {θ1 Mθ2(u1, u2) + (1 − θ1)�
θ2(u1, u2)}1/θ2

= {θ1 min(u1, u2)
θ2 + (1 − θ1)(u1u2)

θ2}1/θ2 ,

with θ1 ∈ [0, 1], θ2 ∈ R. Last but not least, a convex combination of the

Fréchet–Hoeffding lower bound, upper bound and product copula forms the Fréchet

copula

CF (u1, u2, θ1, θ2) = θ1W (u1, u2) + (1 − θ1 − θ2)�(u1, u2) + θ2 M(u1, u2),

subject to 0 ≤ θ1 + θ2 ≤ 1. Note that any bivariate copula can be approximated by

the Fréchet family and a bound of the resulting approximation error can be estimated.

Nelsen (2006) provides further methods for constructing multivariate copulas and

discusses convex combination in more detail.
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Fig. 13.1 Contour diagrams for product, Gaussian, Gumbel and Clayton copulae with Gaussian

(left column) and t3 distributed (right column) margins
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Elliptical Family

Due to the popularity of the Gaussian and t-distribution in several applications,

elliptical copulae play an important role as well. The construction of this type of

copulae is directly based on Sklar’s Theorem showing how new bivariate distributions

can be constructed. The copula-based modeling approach substantially widens the

family of elliptical distributions by keeping the same elliptical copula function and

varying the marginal distributions or vice versa.

To determine the copula function of a given bivariate distribution, we employ the

transformation

C(u1, u2) = F{F−1
1 (u1), F−1

2 (u2)}, u1, u2 ∈ [0, 1], (13.3)

where F−1
i , i = 1, 2, are (generalized) inverses of the marginal distribution func-

tions. Based on (13.3), arbitrary elliptical distributions can be derived. The problem,

however, is that such copulae depend on the inverse distribution functions of the

marginals which are rarely available in an explicit form.

For instance, from Formula 13.3 follows that the Gaussian copula and its density

are given by

CN (u1, u2, δ) = �δ(�
−1(u1),�

−1(u2)),

cN (u1, u2, δ) = (1 − δ2)−
1
2 exp

{
− 1

2
(1 − δ2)−1(u2

1 + u2
2 − 2δu1u2)

}

× exp
{1

2
(u2

1 + u2
2)

}
, for all u1, u2 ∈ [0, 1], δ ∈ [−1, 1],

where � is the distribution function of N(0, 1), �−1 is the functional inverse of �

and �δ denotes the bivariate standard normal distribution function with correlation

coefficient δ. In the bivariate case, the t-copula and its density are given by

Ct (u1, u2, ν, δ) =
∫ t−1

ν (u1)

−∞

∫ t−1
ν (u2)

−∞

Ŵ
(

ν+2
2

)

Ŵ
(

ν
2

)
πν

√
(1 − δ2)

×
{

1 + x2
1 − 2δx1x2 + x2

2

(1 − δ2)ν

}− ν
2
−1

dx1dx2,

ct (u1, u2, ν, δ) = fν,δ{t−1
ν (u1), t−1

ν (u2)}
fν{t−1(u1)} fν{t−1(u2)}

, u1, u2, δ ∈ [0, 1],

where δ denotes the correlation coefficient, ν is the number of degrees of freedom.

fν,δ and fν are joint and marginal t-distributions respectively, while t−1
ν denotes

the quantile function of the tν distribution. In-depth analysis of the t-copula is done

in Rachev et al. (2008) and Luo and Shevchenko (2010). Long-tailed distributed

margins lead to more mass and variability in the tail areas of the corresponding

bivariate distribution. However, the contour-curves of the t-copula are symmetric,

which reflects the ellipticity of the underlying copula. This property is theoretically
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supported by Nelsen (2006), stating that a bivariate copula is elliptical and thus, has

reflection symmetry, if and only if

C(u1, u2, θ) = u1 + u2 − 1 + C(1 − u1, 1 − u2, θ), u1, u2 ∈ [0, 1].

The next class of copulae and their generalizations provide an important flexible and

rich family of alternatives to elliptical copulae.

Archimedean Family

In contrast to elliptical copulae, Archimedean copulae are not constructed via (13.3),

but are related to Laplace transforms of bivariate distribution functions. The function

C : [0, 1]2 → [0, 1] defined as

C(u1, u2) = φ{φ−1(u1) + φ−1(u2)}, u1, u2 ∈ [0, 1],

is a 2-dimensional Archimedean copula, where φ ∈ L = {φ : [0;∞) → [0, 1] |
φ(0) = 1, φ(∞) = 0; (−1) jφ( j) ≥ 0; j = 1, . . . ,∞} is referred to as the generator

of the copula. The generator usually depends on some parameters, however, mostly

generators with a single parameter θ are considered. Nelsen (2006) and Joe (2014)

provide a thoroughly classified list of popular generators for Archimedean copulae

and discuss their properties.

The useful applications in finance, see Patton (2012), appearing to be the Gumbel

copula with the generator function φ(x, θ) = exp {−x1/θ}, 1 ≤ θ < ∞, x ∈ [0, 1],
leading to the copula function

C(u1, u2, θ) = exp
{
−

[
(− log u1)

θ + (− log u2)
θ
]1/θ

}
, u1, u2 ∈ [0, 1].

Genest and Rivest (1989) showed that a bivariate distribution based on the Gumbel

copula with extreme valued marginal distributions is the only bivariate extreme value

distribution belonging to the Archimedean family. Moreover, all distributions based

on Archimedean copulae belong to its domain of attraction under common regularity

conditions. In contrary to elliptical copulae, the Gumbel copula leads to asymmetric

contour diagrams in Fig. 13.1. It exhibits a stronger linkage between positive val-

ues, however, more variability and more mass in the negative tail area. Opposite

is observed for the Clayton copula with the generator φ(x, θ) = (θx + 1)−
1
θ with

−1 < θ < ∞, θ 	= 0, x ∈ [0, 1], and copula function

C(u1, u2, θ) = (u−θ
1 + u−θ

2 − 1)−
1
θ , u1, u2 ∈ [0, 1].

Also, the Frank generator φ(x, θ) = θ−1 log{1 − (1 − e−θ)e−x } with 0 ≤ θ < ∞,

x ∈ [0, 1], enjoys increased popularity and induces the copula function

C(u1, u2, θ) = − θ−1 log

{
1 − e−θ − (1 − e−θu1)(1 − e−θu2)

1 − e−θ

}
, u1, u2 ∈ [0, 1].

The respective Frank copula is the only elliptical Archimedean copula.
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13.2.2 Bivariate Copula and Dependence Measures

Since copulae define the dependence structure between random variables, there is a

relationship between copulae and different dependency measures. The classical mea-

sures for continuous random variables are Kendall’s τ and Spearman’s ρ. Similarly

as copula functions, these measures are invariant under strictly increasing transfor-

mations. They are equal to 1 or −1 under perfect positive or negative dependence

respectively. In contrast to τ and ρ, the Pearson correlation coefficient measures the

linear dependence and, therefore, is not suitable for measuring non-linear relation-

ships. Next, we discuss the relationship between τ , ρ and the underlying copula

function.

Definition 13.2 Let F be a continuous bivariate cumulative distribution function

with the copula C . Moreover, let (X1, X2) ∼ F and (X ′
1, X ′

2) ∼ F be independent

random pairs. Then Kendall’s τ is given by

τ2 = P{(X1 − X ′
1)(X2 − X ′

2) > 0} − P{(X1 − X ′
1)(X2 − X ′

2) < 0}

= 2 P{(X1 − X ′
1)(X2 − X ′

2) > 0} − 1 = 4

∫

[0,1]2

C(u1, u2) dC(u1, u2) − 1.

Kendall’s τ represents the difference between the probability of two random con-

cordant pairs and the probability of two random discordant pairs. For most copula

functions with a single parameter θ there is a one-to-one relationship between θ and

the Kendall’s τ2. For example, it holds that

τ2(Gaussian and t) = 2

π
arcsin δ, τ2(Archimedean) = 4

∫ 1

0

φ−1(t)

(φ−1)′
dt + 1,

τ2(�) = 0, τ2(W ) = 1, τ2(M) = −1.

For instance, this implies that an unknown copula parameter θ of the Gaussian, t

and an arbitrary Archimedean copulae can be estimated using a type of method

of moments procedure with a single moment condition. This requires, however, an

estimator of τ2, c.f. Kendall (1970). Naturally, it is computed by

τ2n = 4

n(n − 1)
Pn − 1,

where n stands for the sample size and Pn denotes the number of concordant

pairs, e.g. such pairs (X1, X2) and (X ′
1, X ′

2) that (X1 − X ′
1)(X2 − X ′

2) > 0. Next we

provide the definition and similar results for the Spearman’s ρ.

Definition 13.3 Let F be a continuous bivariate distribution function with the copula

C and the univariate margins F1 and F2 respectively. Assume that (X1, X2) ∼ F .

Then the Spearman’s ρ is given by
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ρ2 = 12

∫

R
2

F1(x1)F2(x2) d F(x1, x2) = 12

∫

[0,1]2

u1u2 dC(u1, u2) − 3.

Similarly as for Kendall’s τ , the relationship between Spearman’s ρ and specific

copulae is given through

ρ2(Gaussian and t) = 6

π
arcsin

δ

2
,

ρ2(�) = 0, ρ2(W ) = 1, ρ2(M) = −1.

Unfortunately, there is no explicit representation of Spearman’s ρ2 for Archimedean

in terms of generator functions as by Kendall’s τ . The estimator of ρ is easily com-

puted using

ρ2n = 12

n(n + 1)(n − 1)

n∑

i=1

Ri Si − 3
n + 1

n − 1
,

where Ri and Si denote the ranks of two samples. The exact regions determined by

Kendall’s τ and Spearman’s ρ have been recently given by Schreyer et al. (2017).

13.3 Multivariate Copula: Primer and State-of-Art

As mentioned in the introduction, step from bivariate copulas to multivariate is large.

Nevertheless, many works have been written properly different high-dimensional

copulas. This section introduces simple multivariate models and most prominent

families like hierarchical Archimedean copula (HAC), pair-copula constructions and

factor copula.

A d-dimensional copula is also the distribution function on [0, 1]d having all

marginal distributions uniform on [0, 1]. In Sklar’s Theorem, the importance of

copulas in the area of multivariate distributions is re-stated in an exquisite way.

Theorem 13.2 Let F be a multivariate distribution function with margins F1, . . . ,

Fd , then there exists the copula C such that

F(x1, . . . , xd) = C{F1(x1), . . . , Fk(xd)}, x1, . . . , xd ∈ R.

If Fi are continuous for i = 1, . . . , d then C is unique. Otherwise C is uniquely

determined on F1(R) × · · · × Fd(R).

Conversely, if C is a copula and F1, . . . , Fd are univariate distribution functions,

then function F defined above is a multivariate distribution function with margins

F1, . . . , Fd .

As in the bivariate case, the representation in Sklar’s Theorem can be used for con-

structing new multivariate distributions by changing either the copula function of
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marginal distributions. For an arbitrary continuous multivariate distribution we can

determine its copula from the transformation

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F−1

d (ud)}, u1, . . . , ud ∈ [0, 1], (13.4)

where F−1
i are inverse marginal distribution functions. Copula density and density

of the multivariate distribution with respect to copula are

c(u1, . . . , ud) = ∂kC(u1, . . . , ud)

∂u1 . . . ∂ud

, u1, . . . , ud ∈ [0, 1],

f (x1, . . . , xd) = c{F1(x1), . . . , Fd(xd)}
d∏

i=1

fi (xi ), x1, . . . , xd ∈ R.

For the multivariate case as well as for the bivariate case copula functions are invariant

under monotone transformations.

13.3.1 Extensions of Simple and Elliptical Bivariate Copulae

The independence copula and the upper and lower Fréchet–Hoeffding bounds can

be straightforwardly generalized to the multivariate case. The independence copula

is defined by the product �(u1, . . . , ud) =
∏d

i=1 ui and the bounds are given by

W (u1, . . . , ud) = max
(
0,

d∑

i=1

ui + 1 − d
)
,

M(u1, . . . , ud) = min(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

An arbitrary copula C(u1, . . . , ud) lies between the Fréchet–Hoeffdings bounds

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ M(u1, . . . , ud),

where the Fréchet–Hoeffding lower bound is not a copula function for d > 2 though.

The generalization of elliptical copulas to d > 2 is straightforward as well. For

example, the Gaussian case yields

CN (u1, . . . , ud , �) = ��{�−1(u1), . . . , �−1(ud )},

cN (u1, . . . , ud , �) = |�|−1/2

exp
[

− 1

2
{�−1(u1), . . . , �−1(ud )}⊤(�−1 − I ){�−1(u1), . . . , �−1(uk )}

]

for all u1, . . . , ud ∈ [0, 1], where �� is a d-dimensional Gaussian distribution with

zero mean and correlation matrix �. Individual dispersion is imposed via the mar-
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ginal distributions. Note that in the multivariate case the implementation of elliptical

copulas can be involved due to technical difficulties with multivariate cdf’s.

13.3.2 Hierarchical Archimedean Copula

A simple multivariate generalization of the Archimedean copulas is defined as

C(u1, . . . , ud) = φ{φ−1(u1) + · · · + φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (13.5)

where φ ∈ L. This definition provides a simple, but rather limited technique for

the construction of multivariate copulas, since a possibly complicated multivari-

ate dependence structure is determined by a single copula parameter. Furthermore,

multivariate Archimedean copulas imply that the variables are exchangeable. This

means, that the distribution of (u1, . . . , ud) is the same as of (u j1 , . . . , u jd ) for all

jℓ 	= jv . This is certainly not an acceptable assumption in practical applications.

A more flexible method is provided by hierarchical Archimedean copula (HAC)

sometimes also called the nested Archimedean copula which replaces a uniform

margin of a simple Archimedean copula by an additional Archimedean copula. The

iterative substitution of margins by copulas widens the spectrum of attainable depen-

dence structures. For example, the copula function for fully nested HAC is given by

C(u1, . . . , ud) = φd−1

{
φ−1

d−1 ◦ φd−2

(
. . . [φ−1

2 ◦ φ1{φ−1
1 (u1) + φ−1

1 (u2)} (13.6)

+ φ−1
2 (u3)] + · · · + φ−1

d−2(ud−1)
)
+ φ−1

d−1(ud)
}

= φd−1[φ−1
d−1 ◦ C({φ1, . . . ,φd−2})(u1, . . . , ud−1) + φ−1

d−1(ud)]

for φ−1
d−i ◦ φd− j ∈ L∗, i < j , where

L
∗ = {ω : [0; ∞) → [0,∞) | ω(0) = 0, ω(∞) = ∞; (−1) j−1ω( j) ≥ 0; j = 1, . . . ,∞},

As indicated above, contrarily to the usual Archimedean copula (13.5), HAC defines

the dependency structure in a recursive way. At the lowest level of the so called

HAC-tree, the dependency between the two variables is modeled by a copula function

with the generator φ1, i.e. z1 = C(u1, u2) = φ1{φ−1
1 (u1) + φ−1

1 (u2)}. At the second

level, an another copula function is used to model the dependency between z1 and

u3, etc. The generators φi can come from the same family and differ only through the

parameter or, to introduce more flexibility, come from different generator families,

c.f. Hofert (2011). As an alternative to the fully nested model, so-called partially

nested copulas combine arbitrarily many copula functions at each copula level. For

example the following 4-dimensional copula, where the first and the last two variables

are joined by individual copulas with generators φ12 and φ34. Further, the resulted

copulas are combined by a copula with the generator φ.
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C(u1, u2, u3, u4) = φ
(
φ−1[φ12{φ−1

12 (u1) + φ−1
12 (u2)}] + φ−1[φ34{φ−1

34 (u3) + φ−1
34 (u4)}]

)
.

The estimation of HAC is a challenging task, since both the copula structure and

parameters of the generator functions have to be estimated. The variety of possible

structures does not permit the enumeration of all possible structures and selecting

that structure-parameter combination with the largest log-likelihood value.

Okhrin et al. (2013a) first propose methods for determining the optimal structure

of HAC with (non-)parametrically estimated margins and provide asymptotic theory

for the estimated parameters. The basic idea of the estimation procedure uses the fact

that HAC are recursively defined and that dependencies decrease from the lowest to

the highest hierarchical level for common parametric families. To sketch the proce-

dure suppose margins are known: Parameters related to strongly dependent random

variables are estimated first and the variables grouped at the bottom of the HAC-tree.

The determined HAC-tree is spanned by at least two random variables and the tree

itself determines a univariate random variable. After removing all random variables

spanning the tree from the set of variables and adding the univariate random variable

determined by the tree, the parameter of the subsequent level is determined by the

selecting that pair of variables with the strongest dependency again. An additional

level is added to the tree referring to the pair of variables with the strongest depen-

dence and the set of variables is modified as explained above. The sketched steps

are iteratively repeated until the HAC-tree is spanned by all random variables. This

method is implemented in the HAC package for R, see Okhrin and Ristig (2014).

Segers and Uyttendaele (2014) introduce an algorithm for non-parametric struc-

ture determination by firstly decomposing the HAC’s tree structure into four variants

of trivariate structures. Then, the whole tree structure is subsequently determined

based on testing the distance between trivariate copulas and Kendall’s distribution

function. Górecki et al. (2016) generalize the approach of Okhrin et al. (2013a) and

propose an algorithm for simultaneous estimation of the structure and parameters

based on the inversion of Kendall’s τ2, i.e. based on the link between Kendall’s τ2

and Archimedean generators.

Properties and simulation procedures are comprehensively studied in Joe (1997),

Whelan (2004), Savu and Trede (2010), Hofert (2011), Okhrin et al. (2013b), Reza-

pour (2015) and Górecki et al. (2016). Note that HAC became a standard tool for

pricing credit derivatives in academia such as collateralized debt obligations, see

Hering et al. (2010), Hofert and Scherer (2011) and Choroś-Tomczyk et al. (2013).

Brechmann (2014) proposed hierarchical Kendall copula, which does not suffer

from parameter restriction, but are slightly more complicated in estimation. Similar

approach to avoid parameter restrictions and family limitations are proposed by using

Lévy subordinated HAC, see Hering et al. (2010) and the corresponding application

see Zhu et al. (2016).
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13.3.3 Factor Copula

In classical factor analysis, a function links the observed and latent variables under the

assumption that the latent variables explain the observed variables, e.g., see Johnson

and Wichern (2013) and Härdle and Simar (2015). For example, a random variable

X i , i = 1, . . . , d, is generated by an additive factor model, if

X i =
m∑

j=1

αi j W j + εi , (13.7)

where W j , j = 1, . . . , m, are latent common factors and εi , i = 1, . . . , d, are mutu-

ally independent idiosyncratic disturbances. The basic idea of factor models and their

natural interpretation can be exported to the copula world in order to induce depen-

dencies between independent idiosyncratic disturbances via common factors. Factor

copula models, however, can be split into two complementary groups both having

strengths and weaknesses. On the one hand, there are (implicit) factor copula models

inducing dependencies among random variables via a functional which links latent

factors and idiosyncratic disturbances. Such models are a straightforward extension

of factor models from multivariate analysis. On the other hand, factor copulas and

dependencies also arise from integrating the product of conditionally independent

distributions –given a latent factor– with respect to this factor. This approach benefits

from the fact, that the copula collapses to the product copula in case of known factors.

Oh and Patton (2015) concentrate on (implicit) factor copulas for X = (X1, . . . ,

Xd)
⊤ arising from a functional relation between the factor(s) and mutual independent

idiosyncratic errors. In this sense, the dependence component of the joint distribution

of X is implied from the factors’ distribution, the distribution of the idiosyncratic

disturbances and the link function. In particular, X follows a multivariate distribu-

tion specified via a copula, i.e. X ∼ F(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}. For

instance, the additive single factor copula model is represented as

X i = W + εi , i = 1, . . . , d, (13.8)

W ∼ FW (θW ), εi

i.i.d.∼ Fε(θε), W ⊥ εi , for all i = 1, . . . , d, ,

where W is the single common factor following the distribution of FW (θW ) and

ε1, . . . , εd are mutually independent shocks with distribution function Fε(θε). This

model is extended to the non-linear factor copula based on the following represen-

tation,

Z i = h(W, εi ), i = 1, 2, . . . , d, (13.9)

W ∼ FW (θW ), εi

i.i.d.∼ Fε(θε), W ⊥ εi , for all i = 1, . . . , d,
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where h is a non necessarily linear link function. Thus, the dependence structure can

be built in a more flexible way compared to the linear additive version. Model (13.8)

implies a joint Gaussian random vector X = (X1, . . . , Xd)
⊤, if the common factor

and the idiosyncratic factor are both Gaussian. Therefore, a joint density function is

available as well.

Nonetheless, a nice analytical expression of the joint density function for a factor

copula with non-Gaussian margins and non-Gaussian factor is rarely available which

makes parameter estimation demanding. Oh and Patton (2013) propose an estima-

tion method for copula models without analytical form of the density function. This

relies on a simulated method of moments approach building on the simplicity to

draw random samples from a factor model. The proposed estimator for (θ⊤
W , θ⊤

ε )⊤ is

found numerically by minimizing the distance between scale free empirical depen-

dence measures between Xk and Xℓ, such as τ kℓ
2n , k = 1, . . . , d; ℓ = k + 1, . . . , d,

and those obtained from a drawn sample. Oh and Patton (2013) prove under weak

regularity conditions that the simulated method of moment estimator is consistent

and asymptotically normal. However, as argued by Genest et al. (1995), method of

moment estimators of copula parameters can be highly inefficient.

Another form of factor copulae relies on the assumption that the observed vari-

ables U1, . . . , Ud are conditionally independent given latent factors V1, . . . , Vm . Note

that all random variables Ui , i = 1, . . . , d, and V j , j = 1, . . . , m, are assumed to

be uniformly distributed. Then, the conditional distribution of Ui given m factors

V1, . . . , Vm is given by CUi |V1,...,Vm
. By using CUi |V1,...,Vm

, the dependence structure of

the observed variables U1, . . . , Ud can be specified by the following copula function,

such that

C(u1, . . . , ud ) =
∫

[0,1]m

d∏

i=1

CUi |V1,...,Vm
(ui |v1, . . . , vm)dv1 · · · dvm with ui ∈ (0, 1),

(13.10)

where the factors are out integrated. For the special case m = 1, the copula function

(13.10) can be simplified to the form

C(u1, . . . , ud) =
∫

[0,1]

d∏

i=1

CUi |V1
(ui |v1)dv1 with ui ∈ (0, 1). (13.11)

Let CUi ,V1
and cUi ,V1

be the joint cdf and density of the pairs of random variables

(Ui , V1), i = 1, . . . , d. Moreover, let the conditional distribution of Ui given V1

be denoted by CUi |V1
(ui |v1) = ∂CUi ,V1

(ui , v)/∂v|v=v1
. Then, the copula density of

C(u1, . . . , ud) can be represented by

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)

∂u1 · · · ∂ud

=
∫

[0,1]

d∏

i=1

cUi ,V1
(ui , v1)dv1 with ui ∈ (0, 1),

(13.12)
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where cUi ,V1
(ui , v1) = ∂C(ui |v1)/∂ui . Seen from this angle, the dependencies

between d observed variables is determined by d bivariate copulas CUi ,V1
(ui , v).

Based on a parametric copula density c(·; θ), Krupskii and Joe (2013) separate the

parameter estimation into two steps. In the first step, the margins are estimated para-

metrically or non-parametrically. In the second step, the maximum likelihood (ML)

method is employed to estimate the parameter θ.

Numerous literature about the factor copula’s theory and applications can be

referred to. Andersen et al. (2003), Hull and White (2004) and Laurent and Gregory

(2005) have contributed works on generalization of one factor copula models.

A comprehensive review of the factor copula theory is given in Joe (2014). Some

applications by using factor copula models can be referred to Li (2000) for credit

derivative pricing, Krupskii and Joe (2013) for fitting stock returns and Oh and Patton

(2015) for measuring systemic risk.

13.3.4 Vine Copula

Vine copula or pair-copula constructions are originally proposed in Joe (1996) and

developed in depth by Bedford and Cooke (2001), Bedford and Cooke (2002),

Kurowicka and Cooke (2006) and Aas et al. (2009). The catchy name is due to

similarities of the graphical representation of vine copulae and botanical vines. The

fundamental idea of the vine copula is to construct a d-dimensional copula by decom-

posing the dependence structure into d(d − 1)/2 bivariate copulas.

Let S be the index subset of D = {1, . . . , d} referring to the index set of condi-

tioning variables and T be the index set of conditioned variables with T ∪ S = D.

Let ♯M denote the cardinality of set M . The cdf of variables with index in S is

denoted by FS , so that F(x) = FD(x). The conditional cdf of variables with index

in T conditional on S is denoted FT |S . A similar notation is used for the correspond-

ing copulas. To derive a vine copula for a given x = (x1, . . . , xd)
⊤ in the spirit of

Joe (2014), we start from a d-dimensional distribution function, i.e.

F(x) =
∫

(−∞,xS ]
FT |S(xT |yS)d FS(yS), (13.13)

and replace the conditional distribution FT |S(xT |xS) by the corresponding ♯T -

dimensional copula FT |S(xT |xS) = CT ;S{F j |S(x j |xS) : j ∈ T }. The copula CT ;S{F j |S
(x j |xS) : j ∈ T } is implied by Sklar’s Theorem with margins F j |S(x j |xS), j ∈ T .

It is not a conditional distribution although with conditional distribution as margins.

This yields a copula-based representation of the joint d-dimensional distribution

function from (13.13), which is given by

F(x) =
∫

(−∞,xS ]
CT ;S{F j |S(x j |yS) : j ∈ T }d FS(yS). (13.14)
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Note that the support of the integral in (13.13) and (13.14) is a cube (−∞, xS] ∈ R♯S .

Converting all univariate margins to uniformly distributed random variables allows

rewriting F(x) as a d-dimensional copula

C(u) =
∫

[0,uS ]
CT ;S{G j |S(u j |vS) : j ∈ T }dCS(vS), (13.15)

where G j |S(u j |vS) is a conditional distribution from copula CS∪{ j}. If T = {i1, i2},
then

CS∪{i1,i2}(uS∪{i1,i2}) =
∫

[0,uS ]
Ci1,i2;S{G i1|S(ui1

|vS), G i2|S(ui2
|vS)}dCS(vS). (13.16)

Since the essential idea of vine copula is based on building a joint dependence

structure by d(d − 1)/2 bivariate copulae, (13.16) is an important building block

in the construction of vines referring to a (♯S + 2)-dimensional copula built from a

bivariate copula Ci1,i2;S .

In case of continuous random variables, the d-dimensional distribution function

from (13.13) admits a density function f (x1, . . . , xd), which can be decomposed and

represented by bivariate copula densities in an analogue manner. Examples of density

decompositions for the 6-dimensional case related to so called C-vine (canonical

vine), D-vine (drawable vine) and R-vine (regular vine) copulas are given as follows.

The C-vine structure is illustrated in the left column of Fig. 13.2 and its density

decomposition is

c{F1(x1), . . . , F6(x6)} = c12{F1(x1), F2(x2)} · c13{F1(x1), F3(x3)} (13.17)

· c14{F1(x1), F4(x4)} · c15{F1(x1), F5(x5)} · c16{F1(x1), F6(x6)}
· c23;1{F(x2|x1), F(x3|x1)} · c24;1{F(x2|x1), F(x4|x1)}
· c25;1{F(x2|x1), F(x5|x1)} · c26;1{F(x2|x1), F(x6|x1)}
· c34;12{F(x3|x12), F(x4|x12)} · c35;12{F(x3|x12), F(x5|x12)}
· c36;12{F(x3|x12), F(x6|x12)} · c45;123{F(x4|x123), F(x5|x123)}
· c46;123{F(x4|x123), F(x6|x123)} · c56;1234{F(x5|x1234), F(x6|x1234)}.

The density of the D-vine structure –given in the centred column of Fig. 13.2— is

c{F1(x1), . . . , F6(x6)} = c12{F1(x1), F2(x2)} · c23{F2(x2), F3(x3)} (13.18)

· c34{F3(x3), F4(x4)} · c45{F4(x4), F5(x5)} · c56{F5(x5), F6(x6)}
· c13;2{F(x1|x3), F(x2|x3)} · c24;3{F(x2|x3), F(x4|x3)}
· c35;4{F(x3|x4), F(x5|x4)} · c46;5{F(x4|x5), F(x6|x5)}
· c14;23{F(x2|x23), F(x4|x23)} · c25;34{F(x2|x34), F(x5|x34)}
· c36;45{F(x3|x45), F(x6|x45)} · c15;234{F(x1|x234), F(x5|x234)}
· c26;345{F(x2|x345), F(x6|x345)} · c16;2345{F(x1|x2345), F(x6|x2345)}.
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Fig. 13.2 Vine tree structures of C-vine, D-vine and R-vine

The density of the R-vine structure illustrated in the right column of Fig. 13.2 is

c{F1(x1), . . . , F6(x6)} = c12{F1(x1), F2(x2)} · c23{F2(x2), F3(x3)} (13.19)

· c34{F3(x3), F4(x4)} · c25{F2(x2), F5(x5)} · c36{F3(x3), F6(x6)}
· c13;2{F(x1|x2), F(x3|x2)} · c24;3{F(x2|x3), F(x4|x3)}
· c26;3{F(x2|x3), F(x6|x3)} · c35;2{F(x3|x2), F(x5|x2)}
· c15;23{F(x1|x23), F(x5|x23)} · c56;23{F(x5|x23), F(x6|x23)}
· c46;23{F(x4|x23), F(x6|x23)} · c16;235{F(x1|x235), F(x6|x235)}
· c45;236{F(x4|x236), F(x5|x236)} · c14;2356{F(x1|x2356), F(x4|x2356)}.

In particular, the C-vine and D-vine have an intuitive graphical representation

which can be immediately related to the decomposition of the copula density function

into the product of bivariate copula densities. For example, the product of bivariate

copula densities from the first two lines of the right hand side of Eq. 13.17 refers
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to a C-vine represented in the upper left graphic of Fig. 13.2. The formula and the

corresponding graphic illustrate that the first variable X1 is pairwise coupled with

the second, third ... and sixth random variable. The subsequent two lines (3–4) of

Eq. 13.17 are related to the second graphic of the left column of Fig. 13.2. Con-

ditional on X1, random variable X2 is pairwise coupled with X3, X4, X5 and X6.

Connecting the remaining graphics with formulas is left to the reader. While the

“formula-graphic” matching follows a similar scheme in case of the D-vine, the R-

vine belongs to a more general vine copula class and contains the C-vine and D-vine

as special cases. A rigorous definition of an R-vine copula can be found in Joe (2014).

In fact, vines can be estimated by either full or stage-wise ML such as the infer-

ence function for margins (IFM) method discussed below in Sect. 13.4. Nonetheless,

the inference approach derived in Haff (2013) namely the stepwise semi-parametric

estimator deserves to be mentioned in more detail. Here, the marginal distributions

are non-parametrically estimated by the empirical distribution function such as for

factor copulae or HAC. In order to obtain a consistent and asymptotically Gaussian

distributed estimator of a parametric vine copula, a so called simplifying assump-

tion is required. The latter permits replacing “conditional” bivariate copula densi-

ties with unconditional densities. Then, it can be straightforwardly shown, that the

log-likelihood can be maximized in a stage-wise manner. This is due to the decom-

position of the density into the product of bivariate copula densities, so that the

log-likelihood function is a sum of logarithmized copula densities. Coming back

to the C-vine example from Fig. 13.2. At the first stage, all parameters of bivari-

ate copulas represented in the upper left graphic of Fig. 13.2 are estimated, i.e. the

parameters of the copulae for (X1, X2), . . . , (X1, X6). Keeping the corresponding

parameters fixed at estimated values, the four parameters of copulae referring to the

pairs from the second graphic of the left column of Fig. 13.2 are estimated. Holding

these parameters fixed at estimated values again, all vine parameters of the remaining

bivariate densities can be estimated iteratively. Literature on pair-copula construc-

tion is spreading steadily, and most recent information about it can be found on vine

copula homepagehttp://www.statistics.ma.tum.de/en/research/

vine-copula-models/.

13.4 Estimation Methods

The estimation of a copula-based multivariate distribution involves both the estima-

tion of the copula parameters θ and the estimation of the margins F j , j = 1, . . . , d.

The properties and goodness of the estimator of θ heavily depend on the estima-

tors of F j , j = 1, . . . , d. We distinguish between a parametric and a non-parametric

specification of the margins. If we are interested only in the dependency structure,

the estimator of θ should be independent of any parametric models for the mar-

gins. However, Joe (1997) argues that complete distribution models and, therefore,

parametric models for margins are actually more appropriate for applications.
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In the bivariate case, a standard method of estimating the univariate parameter

θ is based on Kendall’s τ2 statistic by Genest and Rivest (1993). The estimator

of τ2 complemented by the method of moments allows to estimate the parame-

ters. However, as shown in Genest et al. (1995), the ML method leads to substan-

tially more efficient estimators. For non-parametrically estimated margins, Genest

et al. (1995) show the consistency and asymptotic normality of ML estimators and

derive the moments of the asymptotic distribution. The ML procedure can be per-

formed simultaneously for the parameters of the margins and of the copula function.

Alternatively, a two-stage procedure can be applied, where the parameters of mar-

gins are estimated at the first stage and the copula parameters at the second stage,

see Joe (1997) and Joe (2005). Chen and Fan (2006) and Chen et al. (2006) analyze

the case of non-parametrically estimated margins. Fermanian and Scaillet (2003)

and Chen and Huang (2007) consider a fully non-parametric estimation of the cop-

ula. Next we provide details on both approaches. Note that estimation procedures

for HAC, conditional-independence-based factor copulas and vines are in fact gen-

eralizations of the subsequent approaches taking specific needs of the copula into

account, e.g., parameter restrictions.

13.4.1 Parametric Margins

Let α = (α⊤
1 , . . . ,α⊤

d )⊤ denote the vector of parameters of marginal distributions

and θ parameters of the copula. The classical full ML estimator η̂ of η = (α⊤,θ⊤)⊤

solves the system of equations

∂L(η, X)

∂η
= 0,

where L(η, X) =
n∑

i=1

log

⎧
⎨
⎩c(F1(x1i ,α1), . . . , Fd (xdi ,αd ), θ)

d∏

j=1

f j (x j i ,α j )

⎫
⎬
⎭

=
n∑

i=1

{
log c(F1(x1i ,α1), . . . , Fd (xdi ,αk),θ) +

d∑

j=1

log f j (x j i , α j )

}
.

Following the standard theory on ML estimation, the estimator η̂ is efficient and

asymptotically normal. However, it is often computationally demanding to solve

the system simultaneously. Alternatively the multistage optimization proposed in

Joe (1997), also known as inference functions for margins, can be applied: Firstly,

the parameters of the margins are separately estimated under the assumption that the

copula is the product copula. Secondly, the parameters of the copula are estimated

replacing the parameters of margins by estimates from the first step and treating them

as known quantities. The above optimization problem is then replaced by
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(
∂L1

∂α⊤
1

, . . . ,
∂Ld

∂α⊤
d

,
∂Ld+1

∂θ⊤

)⊤
= 0, (13.20)

where L j =
n∑

i=1

l j (Xi ), for j = 1, . . . , d + 1,

l j (Xi ) = log f j (x j i ,α j ), for j = 1, . . . , d, i = 1, . . . , n,

and ld+1(Xi ) = log c
{

F1(x1i ,α1), . . . , Fd(xdi ,αd),θ
}
, for i = 1, . . . , n.

The first d components in (13.20) correspond to the usual ML estimation of the

parameters of the marginal distributions. The last component reflects the estimation of

the copula parameters. Detailed discussion on this method can be found in Joe (1997).

Note, that this procedure does not lead to efficient estimators, however, as argued by

Joe (1997) the loss in the efficiency is modest and mainly depends on the strength of

dependencies. This method is a special case of the generalized method of moments

with an identity weighting matrix, see Cherubini et al. (2004). The advantage of the

two-stage procedure lies in the dramatic reduction of the numerical complexity.

13.4.2 Non-parametric Margins

In this section, we consider a non-parametric estimation of the marginal distribu-

tions also referred to as canonical ML. The asymptotic properties of the multistage

estimator for θ do not depend explicitly on the type of the non-parametric estimator,

but on its convergence properties. Here, we use the rectangular kernel (histogram)

resulting in the estimator

F̂ j (x) = (n + 1)−1

n∑

i=1

1(x j i ≤ x), j = 1, . . . , d.

The factor n/(n + 1) is used to restrict fitted values to the open unit interval. This

is necessary as several copula densities are not bounded at zero and/or one. Let

F̂1, . . . , F̂d denote the non-parametric estimators of F1, . . . , Fd . The canonical ML

estimator θ̂ of θ solves the system ∂L/∂θ⊤ = 0 by maximizing the pseudo log-

likelihood with estimated margins F̂1, . . . , F̂d , i.e.

L =
n∑

i=1

l(Xi ) for j = 1, . . . , p,

l(Xi ) = log c
{

F̂1(x1i ), . . . , F̂d(xdi ),θ
}
, for i = 1, . . . , n.

As in the parametric case, the semi-parametric estimator θ̂ is asymptotically normal

under suitable regularity conditions. This method was first used in Oakes (1994)
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and then investigated by Genest et al. (1995) and Shih and Louis (1995). Additional

properties of the estimator, such as the covariance matrix, are stated in these papers.

13.5 Goodness-of-Fit Tests for Copulae

Having a dataset and an estimated copula at hand, it arises the natural question

whether the selected copula describes the data properly. For this purpose, a series

of different goodness-of-fit tests has been developed in the last decade. Under the

H0-hypothesis one assumes that the true copula belongs to some parametric family

H0 : C ∈ C0.

The most natural test approach is to measure the deviation of the parametric copula

from the empirical one given through

Cn(u1, . . . , ud) = n−1

n∑

i=1

d∏

j=1

I {F̂ j (xi j ) ≤ u j }.

Gaensler and Stute (1987) and Radulovic and Wegkamp (2004) show that Cn is a

consistent estimation of the true underlying copula. Several tests are based on the

empirical copula process, which is defined as follows

Cn(u1, . . . , ud) =
√

n{Cn(u1, . . . , ud) − Cθ̂(u1, . . . , ud)}.

Fermanian (2005) and Genest and Rèmillard (2008) propose to compute differ-

ent measures to quantify the deviation of the assumed parametric copula from the

empirical copula, one of those is Cramér–von Mises distance

SE
n =

∫

[0,1]d

Cn(u1, . . . , ud)
2dCn(u1, . . . , ud)

or the weighted Cramér–von Mises distance, with tuning parameters m ≥ 0 and

ζm ≥ 0 given as

RE
n =

∫

[0,1]d

{
Cn(u1, . . . , ud)

[Cθ̂(u1, . . . , ud){1 − Cθ̂(u1, . . . , ud)} + ζm]m

}2

dCn(u1, . . . , ud).

The usual Kolmogorov–Smirnov distance as for classical univariate tests is also

applicable here

T E
n = sup

{u1,...,ud }∈[0,1]d

|Cn(u1, . . . , ud)|.
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The other group of tests developed and investigated by Genest and Rivest (1993),

Wang and Wells (2000), Genest et al. (2006) are based on the probability integral

transform and in particular on so called Kendall’s transform. Having

(X1, . . . , Xd) ∼ F(x1, . . . , xd) = Cθ{F1(x1), . . . , Fd(xd)},

one concludes similar to Fi (X i ) ∼ U (0, 1) that the copula-based random variable is

Cθ{F1(X1), . . . , Fd(Xd)} ∼ Kθ(v)

where Kθ(v) is the univariate Kendall’s distribution (not necessarily uniform), see

Barbe et al. (1996), Jouini and Clemen (1996). Empirically, the distribution function

K can be estimated as

Kn(v) = n−1

n∑

i=1

I
[
Cn{F̂1(xi1), . . . , F̂d(xid)} ≤ v

]
, v ∈ [0, 1].

Further usual test statistics for the univariate distributions like Cramér–von Mises or

Kolmogorov–Smirnov, see Genest et al. (2006), can be applied

S(K )
n =

∫ 1

0

Kn(v)2d K θ̂(v), T (K )
n = sup

v∈[0,1]
|Kn(v)|,

where Kn = √
n(Kn − K θ̂) is the Kendall’s process. Here is, however, a little chal-

lenge in using this tests: as in testing for Kendall’s distribution one tests in null

hypothesis has H
′′
0 : K ∈ K0 = {Kθ : θ ∈ �}, and as H0 ⊂ H

′′
0 , the non-rejection of

H ′′
0 does not imply non rejection of H0. For the bivariate Archimedean copulas H

′′
0

and H0 are equivalent.

Another series of goodness-of-fit tests, is constructed via the other important

integral transform, that dates back to Rosenblatt (1952). Based on the conditional

distribution of Ui by

Cd(ui |u1, . . . , ui−1) = P{Ui ≤ ui |U1 = u1 . . . Ui−1 = ui−1}

= ∂i−1C(u1, . . . , ui , 1, . . . , 1)/∂u1 . . . ∂ui−1

∂i−1C(u1, . . . , ui−1, 1, . . . , 1)/∂u1 . . . ∂ui−1

,

the Rosenblatt transform is defined as follows.

Definition 13.4 Rosenblatt’s probability integral transform of a copula C is the

mapping R : (0, 1)d → (0, 1)d , R(u1, . . . , ud) = (e1, . . . , ed) with e1 = u1 and

ei = Cd(ui |u1, . . . , ui−1), ∀i = 2, . . . , d.

Under this definition, the null hypothesis H0 : C ∈ C0 can be rewritten as H0R :
(e1, . . . , ed)

⊤ ∼ �. The first test based on the Rosenblatt transform exploits infor-

mation, that under H0 transformed observations should be exactly uniform distributed
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and independent, which is not the case, as those variables as not mutually indepen-

dent and only approximately uniform. Nevertheless, two tests use Anderson–Darling

test statistics, see Breymann et al. (2003), and are constructed as

Tn = −n −
n∑

i=1

2i − 1

n
[log G(i) + log{1 − G(n+1−i)}]

where G i might be constructed in two ways. In the first possibility

G i,Gamma = Ŵd

⎧
⎨
⎩

d∑

j=1

(− log ei j )

⎫
⎬
⎭ ,

where Ŵd(·) is the Gamma distribution with shape d and scale 1. The second way

takes

G i,χ2 = χ2
d

⎡
⎣

d∑

j=1

{�−1(ei j )}2

⎤
⎦ ,

where χ2
d refers to the Chi-squared distribution with d degrees of freedom and � is

standard normal distribution. Another possibility compares the variables not via the

Anderson–Darling test statistics, but by purely deviations between estimated density

functions, as in Patton et al. (2004), where the test statistics is constructed by

CCh
n = n

√
h Ĵn − cn

σ

with cn and σ are normalization factors and Ĵn =
∫ 1

0
{ 1

n

∑n
i=1 Kh(w, G i,χ2) − 1}2dw.

As discussed by Dobrić and Schmid (2007), the problem with those tests is that

they have almost no power and even do not capture the type 1 error. Much better

power have tests, that work directly on the copulas of the Rosenblatt transformed

data, see Genest et al. (2009). The idea is to compute Cramer–von Mises statistics

of the following form

Sn = n

∫

[0,1]d

{Dn(u) − �(u)}2du

S(C)
n = n

∫

[0,1]d

{Dn(u) − �(u)}2d Dn(u)

where the empirical distribution function

Dn(u) = Dn(u1, . . . , ud) = 1

n

n∑

i=1

d∏

j=1

I (ei j ≤ u j )
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should be “close” to product copula � under H0.

Different from previous test are those based on the kernel density estimators, and

just to mention one, let us consider test developed by Scaillet (2007), where the test

statistics is given through

Jn =
∫

[0,1]d

{ĉ(u) − K H ∗ c(u; θ̂)}w(u)du,

with “∗” being a convolution operator and w(u) a weight function. The kernel func-

tion K H (y) = K (H−1 y)/ det(H) where K is the bivariate quadratic kernel with

the bandwidth H = 2.6073n−1/6�̂1/2 and �̂ being a sample covariance matrix. The

copula density is estimated non-parametrically as

ĉ(u) = n−1

n∑

i=1

K H [u − {F̂1(X i1), . . . , F̂d(X id)}⊤],

where F̂ j refers to an estimated marginal distribution, j = 1, . . . , d. The most recent

goodness of fit test for copulas have been proposed recently by Zhang et al. (2016),

where one compares the two-step pseudo maximum likelihood:

θ̂ = argmax
θ∈�

n∑

i=1

L{F̂1(X i1), . . . , F̂d(X id); θ}.

with the delete-one-block pseudo maximum likelihood θ̂−b, 1 ≤ b ≤ B:

θ̂−b = argmax
θ∈�

B∑

b′ 	=b

m∑

i=1

L{F̂1(X i1), . . . , F̂d(X id); θ}, b = 1, . . . , B.

Further, “in-sample” and “out-of-sample” pseudo-likelihoods are compared with the

following test statistic:

Tn(m) =
B∑

b=1

m∑

i=1

[
L{F̂1(X i1), . . . , F̂d(X id); θ̂} − L{F̂1(X i1), . . . , F̂d(X id); θ̂−b}

]
.

This leads to some challenges, like computation of [ n
m

] dependence parameters,

but Zhang et al. (2016) proposed an asymptotically equivalent test statistics based

on variability and sensitivity matrices. As most of the above mentioned tests, have

complicated asymptotic distributions, p-values of the tests can be performed via the

parametric bootstrap sketched in the subsequent procedure:
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Step 1 Generate bootstrap sample
{
ǫ
(k)

i , i = 1, . . . , n
}

from copula C(u; θ̂) under

H0 with θ̂ and estimated marginal distribution F̂ obtained from original

data;

Step 2 Based on
{
ǫ
(k)

i , i = 1, . . . , n
}

from Step 1, estimate θ of the copula under

H0, and compute test statistics under consideration, say Rk
n ;

Step 3 Repeat Steps (1–2) N -times and obtain N statistics Rk
n, k = 1, . . . , N ;

Step 4 Compute an empirical p-value as pe = N−1
∑N

k=1 I
(
|Rk

n | ≥ |Rn|
)

with Rn

being the test statistic estimated from original data.

13.6 Empirical Study

Value-at-Risk (VaR) is an important measure in risk management. The traditional

models for VaR estimation assume that the assets returns in a portfolio are jointly

normally distributed. However, numerous empirical studies show that Gaussian based

models are not sufficient to describe data characteristics, especially when extreme

events happen such as financial crisis. The weak points of the Gaussian based models

include the lack of asymmetry and tail dependence. Therefore copula methods come

into the focus.

Twelve different copulas are used in this study to construct dependence structures.

The employed families include the Gaussian copula, t-copula, Archimedean copulas

(Clayton, Gumbel, Joe), HAC (Gumbel, Clayton, Frank), C- and D-vine structures

and two factor copulas linked individually by a bivariate Gumbel and Clayton copula.

The data set utilized in this study includes five time series of stock close prices

containing ADI (Analog Devices, Inc.), AVB (Avalonbay Communities Inc.), EQR

(Equity Residential), LLY (Eli Lilly and Company) and TXN (Texas Instruments

Inc.), from Yahoo finance. Here, ADI and TXN belong to high-tech industry, AVB

and EQR to real estate industry and LLY to pharmacy industry. The time window

spans from 20070113 to 20160116.

Let w = (w1, . . . , wd)
⊤ ∈ Rd denote the long position vector of a d-dimensional

portfolio, St = (S1,t , . . . , Sd,t )
⊤ stand for the vector of asset prices at time t ∈

{1, . . . , T } and X i,t = log(Si,t/Si,t−1) for the one period log-return of the i-th asset at

time t . Then, L t =
∑d

i=1 wi X i,t denotes the portfolio return. The distribution func-

tion of the univariate random variable L t is denoted by FL t
(x) = P(L t ≤ x) and the

Value-at-Risk at level α for the portfolio is defined as the inverse of FL t
(x), namely

VaRt (α) = F−1
L t

(α).

Copula Performance in Risk Management

From the above formulations can be concluded that the idiosyncratic dependence of

the log-return process {X t }T
t=1 is crucial for the appropriate estimation of the VaR.

To remove temporal dependence from X t , the single log-return processes are filtered

through GARCH(1, 1) processes,
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Fig. 13.3 The lower triangular plots give 2-dimensional kernel density estimations contain-

ing scatter plots of pairwise GARCH(1, 1)-filtered log-returns with quantile regressions under

0.05, 0.5, 0.95 quantiles. The upper triangular plots give pairwise contours of five variables

Table 13.1 Pairwise dependence measures including Pearson’s correlation (left), Kendall’s corre-

lation (center) and Spearman’s correlation (right)

AVB EQR TXN ADI AVB EQR TXN ADI AVB EQR TXN ADI

EQR 0.867 0.686 0.866

TXN 0.359 0.375 0.260 0.264 0.376 0.381

ADI 0.384 0.399 0.752 0.277 0.285 0.583 0.398 0.410 0.770

LLY 0.358 0.370 0.358 0.362 0.268 0.260 0.272 0.270 0.390 0.376 0.393 0.391
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Table 13.2 Exceeding ratios based on α ∈ {0.05, 0.01, 0.005, 0.001}
Copula α = 0.05 α = 0.01 α = 0.005 α = 0.001

Gaussian 0.050 0.018 0.009 0.004

t 0.048 0.014 0.011 0.005

Clayton 0.047 0.017 0.011 0.002

Gumbel 0.048 0.025 0.013 0.005

Joe 0.065 0.032 0.030 0.023

C-Vine 0.045 0.019 0.015 0.008

D-Vine 0.044 0.018 0.012 0.007

HAC-Clayton 0.044 0.013 0.008 0.003

HAC-Frank 0.055 0.033 0.026 0.016

HAC-Gumbel 0.070 0.036 0.028 0.017

Factor-Frank 0.046 0.026 0.017 0.015

Factor-Gumbel 0.086 0.042 0.032 0.024

X i,t = μi,t + σi,tǫi,t , (13.21)

σ2
i,t = ai + αi (X i,t−1 − μi,t−1)

2 + βiσ
2
i,t−1. (13.22)

The GARCH(1, 1)-filtered log-returns are illustrated in Fig. 13.3. Obviously,

assets coming from the same sector have high correlation according to the GARCH

residuals. For example, the AVB-EQR and TXN-ADI pairs have strong correlation

coming from real estate industry and high technology industry respectively. The

strong correlation is also observed in Table 13.1 presenting three dependence mea-

sures for pairs of AVB-EQR and TXN-ADI. LLY is from pharmacy industry and

shows weak correlation with the other four companies according to the scatter-plots

and the contours.

The performance of different copulas utilized for VaR estimation is evaluated via

backtesting based on the exceeding ratio

ERα = (T − w)−1

T∑

t=w

1{lt < V̂aRt (α)}, (13.23)

where w is the sliding window size and lt is the realization of L t . For the twelve

copulas, Table 13.2 presents the ERs which is optimal if it equals α. The Gaussian

copula performs best for α = 0.05, the HAC-Clayton copula has reached the most

appropriate ER for α ∈ {0.01, 0.005} and the Clayton copula for α = 0.001. The

Factor-Gumbel copula provides the worst ER values for all values of α. Vines per-

form neither outstanding good nor bad. It deserves to be mentioned that copulas

exhibiting upper-tail dependence show higher ER values, for instance, Joe copula,

HAC-Gumbel copula and Factor-Gumbel copula. Even though some copulas are

based on more parameters and thus, offer more flexibility, the increase of parameters

does not essentially improve the ER (see Fig. 13.4).
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Fig. 13.4 VaRs for α = 0.001 are constructed based on 1000 back-testing points with cop-

ulas of Gaussian, t , Clayton, Gumbel, Joe, C-Vine, D-Vine, HAC-Clayton, HAC-Frank,

HAC-Gumbel, Factor-Frank, Factor-Gumbel, illustrated by row. XFGCHD_VaR_CVine,

https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_CVine, https://github.com/

QuantLet/XFG3/tree/master/XFGCHD_VaR_Clayton, https://github.com/QuantLet/XFG3/tree/

master/XFGCHD_VaR_DVine, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_

Gaussian, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gumbel, https://

github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Joe, https://github.com/QuantLet/

XFG3/tree/master/XFGCHD_VaR_StuT, https://github.com/QuantLet/XFG3/tree/master/

XFGCHD_VaR_hacClayton, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_

hacFrank, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacGumbel

https://github.com/QuantLet/XFG3/blob/master/XFGCHD_VaR_CVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_CVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Clayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Clayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_DVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_DVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gaussian
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gaussian
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gumbel
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Joe
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Joe
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_StuT
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_StuT
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacClayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacClayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacFrank
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacFrank
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacGumbel
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13.7 Conclusion

This work discusses bivariate copula and focuses on three high dimensional copula

models including the hierarchical Archimedean copula, the factor copula and the

vine copula. The three models are developed in-depth with their advantages in mod-

eling high dimensional data for diverse research fields. For the sake of comparison,

an empirical study from risk management is presented. In this study, the estimation

of Value-at-Risk is performed under 12 different copula models including the dis-

cussed state-of-art copulas as well as some classical benchmarks such as some of the

elliptical and Archimedean family. Considered in toto, the hierarchical Archimedean

copula with Clayton generator performs better than the alternatives in terms of the

exceeding ratios measure.
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Dobrić, J., & Schmid, F. (2007). A goodness of fit test for copulas based on Rosenblatt’s transfor-

mation. Computational Statistics & Data Analysis, 51(9), 4633–4642.

Durante, F., Fernández-Sánchez, J., & Sempi, C. (2012). A topological proof of Sklar’s theorem.

Applied Mathematical Letters, 26, 945–948.

Durante, F., Fernández-Sánchez, J., & Sempi, C. (2013). Sklar’s theorem obtained via regularization

techniques. Nonlinear Analysis: Theory, Methods & Applications, 75(2), 769–774.

Durante, F., & Sempi, C. (2005). Principles of copula theory. Boca Raton: Chapman and Hall/CRC.



276 O. Okhrin et al.

Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate Analysis, 95(1),

119–152.

Fermanian, J.-D., & Scaillet, O. (2003). Nonparametric estimation of copulas for time series. Journal

of Risk, 5, 25–54.

Gaensler, P., & Stute, W. (1987). Seminar on empirical processes. Boca Raton: Springer Basel AG.

Genest, C., Ghoudi, K., & Rivest, L.-P. (1995). A semi-parametric estimation procedure of depen-

dence parameters in multivariate families of distributions. Biometrika, 82(3), 543–552.

Genest, C., Quessy, J.-F., & Rémillard, B. (2006). Goodness-of-fit procedures for copula models

based on the probability integral transformation. Scandinavian Journal of Statistics, 33, 337–366.

Genest, C., & Rèmillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in

semiparametric models. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 6(44),

1096–1127.

Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and

a power study. Insurance: Mathematics and Economics, 44, 199–213.

Genest, C., & Rivest, L.-P. (1989). A characterization of Gumbel family of extreme value distribu-

tions. Statistics & Probability Letters, 8(3), 207–211.

Genest, C., & Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean cop-

ulas. Journal of the American Statistical Association, 88(3), 1034–1043.
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Chapter 14

Measuring and Modeling Risk Using

High-Frequency Data

Wolfgang Karl Härdle, N. Hautsch and U. Pigorsch

Abstract Measuring and modelling financial volatility is the key to derivative pric-

ing, asset allocation and risk management. The recent availability of high-frequency

data allows for refined methods in this field. In particular, more precise measures

for the daily or lower frequency volatility can be obtained by summing over squared

high-frequency re- turns. In turn, this so called realized volatility can be used for more

accurate model evaluation and description of the dynamic and distributional structure

of volatility. Moreover, non-parametric measures of systematic risk are attainable,

that can straightforwardly be used to model the commonly observed time-variation

in the betas. The discussion of these new measures and methods is accompanied by

an empirical illustration using high-frequency data of the IBM incorporation and of

the DJIA index.

14.1 Introduction

Volatility modelling is the key to the theory and practice of pricing financial prod-

ucts. Asset allocation and portfolio as well as risk management depend heavily on a

correct modelling of the underlying(s). This insight has spurred extensive research in
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financial econometrics and mathematical finance. Stochastic volatility models with

separate dynamic structure for the volatility process have been in the focus of the

mathematical finance literature, see Heston (1993) and Bates (2000), while paramet-

ric GARCH-type models for the returns of the underlying(s) have been intensively

analyzed in financial econometrics.

The validity of these models in practice though depends upon specific distribu-

tional properties or the knowledge of the exact (parametric) form of the volatility

dynamics. Moreover, the evaluation of the predictive ability of volatility models is

quite important in empirical applications. However, the latent character of the volatil-

ity poses a problem. To what measure should the volatility forecasts be compared

to? Conventionally, the forecasts of daily volatility models, such as GARCH-type or

stochastic volatility models, have been evaluated with respect to absolute or squared

daily returns. In view of the excellent in-sample performance of these models, the

forecasting performance, however, seems to be disappointing.

The availability of ultra-high-frequency data opens the door for a refined measure-

ment of volatility and model evaluation. An often used and very flexible model for

logarithmic prices of speculative assets is the (continuous time) stochastic volatility

model:

dYt = (µ + βσt )dt + σt dW t , (14.1)

where σ2
t is the instantaneous (spot) variance, µ denotes the drift, β is the risk

premium, and Wt defines the standard Wiener process. The object of interest is the

amount of variation accumulated in a time interval ∆ (e.g., a day, week, month etc.).

If n = 1, 2, . . . denotes a counter for the time intervals of interest, then the term

σ2
n =

∫ n∆

(n−1)∆

σ2
t dt (14.2)

is called the actual volatility, see Barndorff-Nielsen and Shephard (2002b). The actual

volatility is the quantity that reflects the market risk structure (scaled in ∆) and is the

key element in pricing and portfolio allocation. Actual volatility (measured in scale

∆) is of course related to the integrated volatility:

V (t) =
∫ t

0

σ2
s ds (14.3)

It is worth noting that there is a small notational confusion here: the mathematical

finance literature would denote σt as “volatility” and σ2
t as “variance”, see Nelson

and Foster (1994). For example, an important result is that V (t) can be estimated

from Yt via the quadratic variation:

[Yt ]M =
∑

(Yt j
− Yt j−1

)2, (14.4)
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where t0 = 0 < t1 < . . . < tM = t is a sequence of partition points and sup j |t j+1 −
t j | → 0. Andersen and Bollerslev (1998) have shown that

[Yt ]M

p→ V (t), M → ∞. (14.5)

This observation leads us to consider in an interval ∆ with M observations

RVn =
M∑

j=1

(Yt j
− Yt j−1

)2 (14.6)

with t j = ∆{(n − 1) + j/M}. Note that RVn is a consistent estimator of σ2
n and

is called realized volatility. Barndorff-Nielsen and Shephard (2002b) point out that

RVn − σ2
n is approximately mixed Gaussian and provide the asymptotic law of

√
M(RVn − σ2

n). (14.7)

The realized volatility turns out to be very useful in the assessment of the valid-

ity of volatility models. For instance, reconciling evidence in favor of the forecast

accuracy of GARCH-type models is observed when using realized volatility as a

benchmark rather than daily squared returns. Moreover, the availability of the real-

ized volatility measure initiated the development of a new and quite accurate class

of volatility models. In particular, based on the ex-post observability of the realized

volatility measure, volatility is now treated as an observed rather than a latent variable

to which standard time series procedures can be applied.

The remainder of this chapter is structured as follows. We first discuss the practi-

cal problems encountered in the empirical construction of realized volatility which

are due to the existence of market microstructure noise. Section 14.3 presents the

stylized facts of realized volatility, while Sect. 14.4 reviews the most popular real-

ized volatility models. Section 14.5 illustrates the usefulness of the realized volatility

concept for measuring time-varying systematic risk within a conditional asset pricing

model (CAPM).

14.2 Market Microstructure Effects

The consistency of the realized volatility estimator builds on the notion that prices are

observed in continuous time and without measurement error. In practice, however,

the sampling frequency is inevitably limited by the actual quotation or transaction

frequency. Since high-frequency prices are subject to market microstructure noise,

such as price-discreteness, bid-and-ask bounce effects, transaction costs etc., the

true price is unobservable. Market microstructure effects induce a bias in the realized

volatility measure, which can straightforwardly be illustrated in the following simple

discrete-time setup. Assume that the logarithmic high-frequency prices are observed

with noise, i.e.,
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Fig. 14.1 Volatility

signature plot for IBM,

2001–2006. Average time

between trades: 6.78 s.

XFGsignature

Yt j
= Y ∗

t j
+ εt j

, (14.8)

where Y ∗
t j

denotes the latent true price. Moreover, the microstructure noise εt j
is

assumed to be iid distributed with mean zero and variance η2, and is independent of

the true return. Let r∗
t j

denote the efficient return, then the high-frequency continu-

ously compounded returns

rt j
= r∗

t j
+ εt j

− εt j−1
(14.9)

follow an MA(1) process. Such a return specification is well established in the mar-

ket microstructure literature and is usually justified by the existence of the bid-

ask bounce effect, see, e.g., Roll (1984). In this model, the realized volatility is

given by

RVn =
M∑

i=1

(r∗
t j
)2 + 2

M∑

j=1

r∗
t j
(εt j

− εt j−1
) +

M∑

j=1

(εt j
− εt j−1

)2. (14.10)

with

E[RVn] = E[RV ∗
n ] + 2Mη2. (14.11)

If the sampling frequency goes to infinity, we know from the previous section that

RV ∗
n consistently estimates σ2

n and, thus, the realized volatility based on the observed

price process is a biased estimator of the actual volatility with bias term 2Mη2.

Obviously, for M → ∞, RVn diverges.

This diverging behavior can also be observed empirically in so called volatility

signature plots. Figure 14.1 shows the volatility signature for one stock of the IBM

incorporation over the period ranging from January 2, 2001 to December 29, 2006.

The plot depicts the average annualized realized volatility over the full sample period

constructed at different frequencies measured in number of ticks (depicted in log

scale). Obviously, the realized volatility is large at the very high frequency, but

decays for lower frequencies and stabilizes around a sampling frequency of 300

ticks, which corresponds approximately to a 30 min sampling frequency, given that

the average duration between two consecutive trades is around 6.78 s.

https://github.com/QuantLet/XFG3/blob/master/XFGsignature
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Thus, sampling at a lower frequency, such as every 10, 15 or 30 min, seems to

alleviate the problem of market microstructure noise and has thus frequently been

applied in the literature. This so-called sparse sampling, however, comes at the cost

of a less precise estimate of the actual volatility. Alternative methods have been

proposed to solve this bias-variance trade-off for the above simple noise assump-

tion as well as for more general noise processes, allowing also for serial depen-

dence in the noise and/or for dependence between the noise and the true price

process, which is sometimes referred to as endogenous noise. A natural approach to

reduce the market microstructure noise effect is to construct the realized volatil-

ity measure based on prefiltered high-frequency returns, using, e.g., an MA(1)

model.

In the following we briefly present two more elaborate and under specific noise

assumptions consistent procedures for estimating actual volatility. Both have been

theoretically considered in several papers. The subsampling approach originally

suggested by Zhang et al. (2005) builds on the idea of averaging over various

realized volatilities constructed from different high-frequency subsamples. For the

ease of exposition we focus again on one time period, e.g., one day, and denote

the full grid of time points at which the M intradaily prices are observed by

Gt = {t0, . . . , tM }. The realized volatility that makes use of all observations in the

full grid is denoted by RV (all)
n . Moreover, the grid is partitioned into L nonover-

lapping subgrids G(l), l = 1, . . . , L . A simple way for selecting such a subgrid

may be the socalled regular allocation, in which the l-th subgrid is given by

G(l) = {tl−1, tl−1+L , . . . , tl−1+Ml L} for l = 1, . . . , L , and Ml denoting the number of

observations in each subgrid. E.g., consider 5-min returns that can be measured at

the time points 9:30, 9:35, 9:40, …, and at the time points 9:31, 9:36, 9:41, …and

so forth. In analogy to the full grid, the realized volatility for subgrid l, denoted

by RV (l)
n , is constructed from all data points in subgrid l. Thus, RV (l)

n is based on

sparsely sampled data.

The actual volatility is then estimated by:

RV (ZMA)
n =

1

L

L∑

l=1

RV (l)
n −

M

M
RV (all)

n , (14.12)

where M = 1
L

∑L
l=1 Ml . The latter term on the right-hand side is included to bias-

correct the averaging estimator 1
L

∑L
l=1 RV (l)

n . As the estimator (14.12) consists of

a component based on sparsely sampled data and one based on the full grid of price

observations, the estimator is also called the two-timescales estimator.

Given the similarity to the problem of estimating the long-run variance of a station-

ary time series in the presence of autocorrelation, it is not surprising that kernel-based

methods have been developed for estimating the realized volatility. Most recently,

Barndorff-Nielsen et al. (2008) proposed the flat-top realized kernel estimator
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RV (BHLS)
n = RV n +

H∗∑

h=1

K

(
h − 1

H∗

)
(̂γh + γ̂−h) (14.13)

with

γ̂h =
M

M − h

M∑

j=1

rt j
rt j−h

, (14.14)

and K (0) = 1, K (1) = 0. Obviously, the summation term on the righthand side is the

realized kernel correction of the market microstructure noise. Zhou (1996), who was

the first to consider realized kernels, proposed (14.13) with H = 1, while Hansen

and Lunde (2006) allowed for general H but restricted K (x) = 1. Both of these

estimators, however, have been shown to be inconsistent. Barndorff-Nielsen et al.

(2008) instead propose several consistent realized kernel estimators with an optimally

chosen H∗, such as the Tukey-Hanning kernel, i.e. K (x) = {1 − cos π(1 − x)2}/2,

which performs also very well in terms of efficiency as illustrated in a Monte Carlo

analysis. They further show, that these realized kernel estimators are robust to market

microstructure frictions that may induce endogenous and dependent noise terms.

14.3 Stylized Facts of Realized Volatility

Figure 14.2 shows kernel density estimates of the plain and logarithmic daily realized

volatility in comparison to plots of a correspondingly fitted (log) normal distribu-

tion based on the IBM data, 2001–2006. The pictures in the top of Fig. 14.2 show

the unconditional distribution of the (plain) realized volatility in contrast to a fitted

normal distribution. As also confirmed by the corresponding descriptive statistics dis-

played by Table 14.1, we observe that realized volatility reveals severe right-skewness

and excess kurtosis. This result might be surprising given that the realized volatil-

ity consists of the sum of squared intra-day returns and thus central limit theorems

should apply. However, it is a common finding that intra-day returns are strongly

serially dependent requiring significantly higher intra-day sampling frequencies to

observe convergence to normality. In contrast, the unconditional distribution of the

logarithmic realized volatility is well approximated by a normal distribution. The

sample kurtosis is strongly reduced and is close to 3. Though slight right-skewness

and deviations from normality in the tails of the distribution are still observed, the

underlying distribution is remarkably close to that of a Gaussian distribution.

A common finding is that financial returns have fatter tails than the normal distri-

bution and reveal significant excess kurtosis. Though GARCH models can explain

excess kurtosis, they cannot completely capture these properties in real data. Con-

sequently, (daily) returns standardized by GARCH-induced volatility, typically still

show clear deviations from normality. However, a striking result in recent literature

is that return series standardized by the square root of realized volatility, rn/
√

RV n ,

are quite close to normality. This result is illustrated by the plots in the bottom of
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Fig. 14.2 Kernel density estimates of the (logarithmic) realized volatility and of correspondingly

standardized returns for IBM, 2001–2006. The dotted line depicts the density of the correspondingly

fitted normal distribution. The left column depicts the kernel density estimates based on a log scale.

XFGkernelcom

https://github.com/QuantLet/XFG3/blob/master/XFGkernelcom
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Table 14.1 Descriptive statistics of the realized volatility, log realized volatility and standardized

returns, IBM stock, 2001–2006. LB (40) denotes the Ljung-Box statistic based on 40 lags. The last

row gives an estimate of the order of fractional integration based on the Geweke and Porter-Hudak

estimator

RVn ln RVn rn/
√

RVn

Mean 2.26 0.14 −0.000

Median 1.05 0.05 −0.013

Skewness 9.93 0.42 0.035

Variance 22.57 1.13 0.979

Kurtosis 150.47 3.43 2.349

1%-quantile 0.13 −2.03 −1.980

5%-quantile 0.24 −1.41 −1.558

95%-quantile 7.58 2.00 1.628

99%-quantile 17.66 2.87 2.141

LB(40) 2140.48 14213.07 39.780

p-value LB(40) 0.00 0.00 0.480

d̂ 0.38 0.62 −

Fig. 14.2 and the descriptive statistics in Table 14.1. Though we observe deviations

from normality for returns close to zero resulting in a kurtosis which is even below

3, the fit in the tails of the distribution is significantly better than that for plain log

returns. Summarizing the empirical findings from Fig. 14.2, we can conclude that the

unconditional distribution of daily returns is well described by a lognormal-normal

mixture. This confirms the mixture-of-distribution hypothesis by Clark (1973) as

well as the idea of the basic stochastic volatility model, where the log variance is

modelled in terms of a Gaussian AR(1) process.

Figure 14.3 shows the evolvement of daily realized volatility over the analyzed

sample period and the implied sample autocorrelation functions (ACFs). As also

shown by the corresponding Ljung-Box statistics in Table 14.1, the realized volatility

is strongly positively autocorrelated with high persistence. This is particularly true

for the logarithmic realized volatility. The plot shows that the ACF decays relatively

slowly providing hints on the existence of long range dependence. Indeed, a common

finding is that the realized volatility processes reveal long range dependence which is

well captured by fractionally integrated processes. In particular, if RVn is integrated

of the order d ∈ (0, 0.5), it can be shown that

Var

⎡
⎣

h∑

j=1

RV n+ j

⎤
⎦ ≈ ch2d+1, (14.15)

with c denoting a constant. Then, plotting ln Var

[∑h
j=1 RV n+ j

]
against ln h should

result in a straight line with slope 2d + 1. Most empirical studies strongly confirm
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Fig. 14.3 Time evolvement and sample autocorrelation function of the realized volatility for IBM,

2001–2006. XFGrvtsacf

this relationship and find values for d between 0.35 and 0.4 providing clear evidence

for long range dependence. Estimating d using the Geweke and Porter-Hudak esti-

mator, we obtain d̂ = 0.38 for the series of realized volatilities and d̂ = 0.62 for

its logarithmic counterpart. Hence, for both series we find clear evidence for long

range dependence. However, the persistence in logarithmic realized volatilities is

remarkably high providing even hints on non-stationarity of the process.

Summarizing the most important empirical findings, we can conclude that the

unconditional distributions of logarithmic realized volatility and of correspondingly

standardized log returns are well approximated by normal distributions and that real-

ized volatility itself follows a long memory process. These results suggest (Gaussian)

ARFIMA models as valuable tools to model and to predict (log) realized volatility.

14.4 Realized Volatility Models

As illustrated above, realized volatility models should be able to capture the strong

persistence in the sample autocorrelation function. While this seemingly long-

memory pattern is widely acknowledged, there is still no consensus on the mechanism

https://github.com/QuantLet/XFG3/blob/master/XFGrvtsacf
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generating it. One approach is to assume that the long memory is generated by a frac-

tionally integrated process as originally introduced by Granger and Joyeux (1980)

and Hosking (1981). In the GARCH literature this has lead to the development of the

fractionally integrated GARCH model as, e.g., proposed by Baillie et al. (1996). For

realized volatility the use of a fractionally integrated autoregressive moving aver-

age (ARFIMA) process was advocated, for example, by Andersen et al. (2003). The

ARFIMA (p, q) model is given by

φ(L)(1 − L)d(yn − µ) = ψ(L)un, (14.16)

with φ(L) = 1 − φ1L − . . . − φp L p, ψ(L) = 1 + ψ1L + . . . ψq Lq , and d denot-

ing the fractional difference parameter. Moreover, un is usually assumed to be a

Gaussian white noise process, and yn denotes either the realized volatility (see

Koopman et al. 2005) or its logarithmic transformation. Several extensions of the

realized volatility ARFIMA model have been proposed, accounting, for example,

for leverage effects (see Martens et al. 2004), for non-Gaussianity of (log) realized

volatility or for time-variation in the volatility of realized volatility (see Corsi et al.

2008). Generally the empirical results show significant improvements in the point

forecasts of volatility when using ARFIMA rather than GARCH-type models.

An alternative model for realized volatility has been suggested by Corsi (2009).

The so-called heterogeneous autoregressive (HAR) model of realized volatility

approximates the long-memory pattern by a sum of multi-period volatility com-

ponents. The simulation results in Corsi (2009) show, that the HAR model can quite

adequately reproduce the hyperbolic decay in the sample autocorrelation function of

realized volatility even if the number of volatility components is small. For the HAR

model, let the kperiod realized volatility component be defined by the average of the

single-period realized volatilities, i.e.,

RV n+1−k:n =
1

k

k∑

j=1

RV n− j . (14.17)

The HAR model with the so-defined daily, weekly and monthly realizedvolatility

components, is given by

log RV n = α0 + αd log RV n−1 + αw log RV n−5:n−1

+αm log RV n−21:n−1 + un, (14.18)

with un typically being a Gaussian white noise. The HAR model has become very

popular due to its simplicity in estimation and its excellent in-sample fit and predictive

ability (see e.g. Andersen et al. 2003; Corsi et al. 2008). Several extensions exist and

deal, for example, with the inclusion of jump measures (see Andersen et al. 2003)

or non-linear specifications based on neural networks (see Hillebrand and Medeiros

2007).
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Alternative realized volatility models have been proposed in, e.g., Barndorff-

Nielsen and Shephard (2002a), who consider a superposition of Ornstein Uhlenbeck

processes, and in Deo et al. (2006), who specify a long-memory stochastic volatility

model. A recent and comprehensive review on realized volatility models can also be

found in McAleer and Medeiros (2008b).

14.5 Time-Varying Betas

So far, our discussion focused on the measurement and modeling of the volatility of

a financial asset using high-frequency transaction data. From a pricing perspective,

however, systematic risk is most important. In this section, we therefore discuss,

how high-frequency information can be used for the evaluation and modeling of

systematic risk. A common measure for the systematic risk is given by the so-called

(market) beta, which represents the sensitivity of a financial asset to movements

of the overall market. As the beta plays a crucial role in asset pricing, investment

decisions, and the evaluation of the performance of asset managers, a precise estimate

and forecast of betas is indispensable. While the unconditional capital asset pricing

model implies a linear and stable relationship between the asset’s return and the

systematic risk factor, i.e., the return of the market, empirical results suggest that

the beta is time-varying, see, for example, Bos and Newbold (1984), and Fabozzi

and Francis (1978). Similar evidence has been found for multi-factor asset pricing

models, where the factor loadings seem to be time-varying rather than constant. A

large amount of research has therefore been devoted to conditional CAPM and APT

models, which allow for time-varying factor loadings, see, for example, Dumas and

Solnik (1995), Ferson and Harvey (1991), Ferson and Harvey (1993), and Ferson

and Korajczyk (1995).

14.5.1 The Conditional CAPM

Below we consider the general form of the conditional CAPM. A similar discussion

for multi-factor models can be found in Bollerslev and Zhang (2003). Assume that

the continuously compounded return of a financial asset i from period n to n + 1 is

generated by the following process

ri;n+1 = αi;n+1|n + βi;n+1|nrm;n+1 + ui;n+1, (14.19)

with rm;n+1 denoting the excess market return and αn+1|n denoting the intercept

that may be time-varying conditional on the information set available at time n,

as indicated by the subscript. The idiosyncratic risk un+1 is serially uncorrelated,

En(un+1) = 0, but may exhibit conditionally time-varying variance. Note that En(·)
denotes the expectation conditional on the information set available at time n. More-
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over, we assume that E(rm;n+1un+1) = 0 for all n. The conditional beta coefficient

of the CAPM regression (14.19) is defined as

βi;n+1|n =
Cov(ri;n+1, rm;n+1)

Var(ri;n+1)
. (14.20)

Now, assume that lending and borrowing at a one-period risk-free rate r f ;n is possible.

Then, the arbitrage-pricing theory implies that the conditional expectation of the next

period’s return at time n is given by

En(ri;n+1) = r f ;n + βi;n+1|nEn(rm;n+1). (14.21)

Thus, the computation of the future return of asset i requires to specify how the beta

coefficient evolves over time.

The most common approach to allow for time-varying betas is to re-run the CAPM

regression in each period based on a sample of 3 or 5 years. We refer to this as the

rolling regression (RR) method. More elaborate estimates of the beta can be obtained

using the Kalman-filter, which builds on a statespace representation of the conditional

CAPM or by specifying a dynamic model for the covariance matrix between the return

of asset i and the market return.

14.5.2 Realized Betas

The evaluation of the in-sample fit and predictive ability of various beta models

is also complicated by the unobservability of the true beta. Consequently, model

comparisons are usually conducted in terms of implied pricing errors, i.e., ei,n+1 =
r̂i,n+1 − ri,n+1, with r̂i,n+1 = r f ;n + β̂i;n+1|nEn(rm;n+1). Owing to the discussion on

the evaluation of volatility models, the question arises, whether high-frequency data

may also be useful for the evaluation of competing beta estimates. The answer is a

clear “yes”. In fact, high-frequency based estimates of betas are quite informative

for the dynamic behavior of systematic risk. The construction of so-called realized

betas is straightforward and builds on realized covariance and realized volatility

measures. In particular, denote the realized volatility of the market by RVm;n and the

realized covariance between the market and asset i by RCovm,i;n =
∑M

j=1 ri,t j
rm,t j

,

where ri,t j
and rm,t j

denote the j-th high-frequency return of the asset and the market,

respectively, during day n. The realized beta is then defined as

β̂H F;i;n =
RCovm,i;n

RV m;n
. (14.22)

Barndorff-Nielsen and Shephard (2004) show that the realized beta converges almost

surely for all n to the integrated beta over the time period from n − 1 to n, i.e., the

daily systematic risk associated with the market index. Note that the realized beta
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can also be obtained from a simple regression of the highfrequency returns of asset

i on the high-frequency returns of the market, see, e.g., Andersen et al. (2006). The

preciseness of the realized beta estimator can easily be assessed by constructing the

(1 − α)-percent confidence intervals, which have been derived in Barndorff-Nielsen

and Shephard (2004) and are given by

β̂H F;i;n ± zα/2

√√√√√
⎛
⎝

M∑

j=1

r2
m,t j

⎞
⎠

−2

ĝi;n, (14.23)

where zα/2 denotes the (α/2)-quantile of the standard normal distribution,

ĝi;n =
M∑

j=1

x2
i; j −

M−1∑

j=1

xi; j xi; j+1, (14.24)

and

xi; j = ri,t j
rm,t j

− β̂H F;i;nr2
m,t j

. (14.25)

The upper panel in Fig. 14.4 presents the time-evolvement of the monthly realized

beta for IBM incorporation over the period ranging from 2001 to 2006. We use the

Dow Jones Industrial Average Index as the market index and construct the realized

betas using 30 min returns. The graph also shows the 95%-confidence intervals of the

realized beta estimator. The time-varying nature of systematic risk emerges strikingly

from the figure and provides once more evidence for the relevance of its inclusion in

asset pricing models.

Interestingly, the sample autocorrelation function of the realized betas depicted

in the lower panel of Fig. 14.4 indicates significant serial correlation over the short

horizon. This dependency can be explored for the prediction of systematic risk.

Bollerslev and Zhang (2003), for example, find that an autoregressive model for the

realized betas outperforms the RR approach both in terms of forecast accuracy as

well as in terms of pricing errors.

14.6 Summary

We review the usefulness of high-frequency data for measuring and modeling actual

volatility at a lower frequency, such as a day. We present the realized volatility as

an estimator of the actual volatility along with the practical problems arising in the

implementation of this estimator. We show that market microstructure effects induce

a bias to the realized volatility and we discuss several approaches for the alleviation

of this problem. The realized volatility is a more precise estimator of the actual

volatility than the conventionally used daily squared returns, and thus provides more
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Fig. 14.4 Time evolvement and sample autocorrelation function of the realized volatility for IBM,

2001–2006. XFGbetatsacf

accurate information on the distributional and dynamic properties of volatility. This is

important for many financial applications, such as asset pricing, portfolio allocation

or risk management. As a consequence, several modeling approaches for realized

volatility exist and have been shown to usually outperform traditional GARCH or

stochastic volatility models, both in terms of in-sample as well as out-of-sample

performance. We further demonstrate the usefulness of the realized variance and

covariance estimator for measuring and modeling systematic risk. For the empirical

examples provided in this chapter we use tick-by-tick transaction data of one stock

of the IBM incorporation and of the DJIA index.
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Chapter 15
Measuring Financial Risk in Energy Markets

S. Žiković

Abstract We investigate the relative performance of a wide array of Value at risk
(VaR) and Expected Tail Loss (ETL) risk models in the energy commodities markets.
The risk models are tested on a sample of daily spot prices of WTI oil, Brent oil, nat-
ural gas, heating oil, coal and uranium yellow cake during the recent global financial
crisis. The analysed sample includes periods of backwardation and contango. After
obtaining the VaR and ETL estimates we proceed to evaluate the statistical signifi-
cance of the differences in performance of the analysed risk models. We employ a
novel methodology for comparing VaR performance allowing us to rank competing
models. Our simulation results show that for a significant number of different VaR
models there is no statistical difference in the performance.

15.1 Introduction

Energy commodities are constantly at a centre stage of the global financial and
geopolitical interest. The multiplicative effect of energy commodities on electric-
ity, agricultural and industrial production makes protecting against commodity risk
associated energy prices a necessity. This applies not only to energy producers and
users but also to financial institutions and a wide spectrum of players from different
industries. Looking from the financial modelling perspective it is hard to treat energy
commodities as a single asset class since their specificities and respective markets
differ significantly. The main differences refer to the influence of geopolitics, eco-
logical issues, storage costs, safety issues, spatial distance between production and
consumption sites and geographical dispersion. For these reasons energy commodi-
ties usually display higher volatility, fatter tails and skewness compared to classical
financial assets. Hedging against energy price changes is equally important to buyers
and sellers/producers of energy, which protect their businesses from rising and/or
falling energy prices as it is to the financial sector, where commodities serve as
an alternative investment vehicle. In order to protect the company’s business against
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commodity risks the first step would be to correctly evaluate the market risk of energy
commodities. A reliable energy risk forecasting model is essential for this task.

Value at Risk (VaR) and Expected Tail Loss (ETL) have established themselves as
an essential risk management tool in the financial industry. Same as with other asset
classes, VaR/ETL can be used to quantify the market risk of energy commodities
associated with the specific probability level. Mining and energy companies under-
take natural hedges but it usually not sufficient and a proactive approach to hedging
and risk management is required. With the use of VaR and/or ETL it is possible to
differentiate between risks which are negligible and those that require hedging. In
light of the dramatic and protracted fall in the prices of fossil fuels we will focus on
the risks facing energy producers i.e. risks from holding a long position in energy.

The issue of energy hedging has been well studied in the energy economics litera-
ture. Among others, Agnolucci (2009) studied the market volatility of WTI and found
that asymmetric GARCH models outperform implied volatility models in terms of
predictive accuracy. Cheong (2009) investigated the out-of-sample performance of
four GARCH models under three loss functions, finding that the simplest and most
parsimonious GARCH model provides a superior fit to Brent oil data. On the other
hand, a complex FIAPARCH out-of-sample WTI oil forecasts provided superior
performance. Wei et al. (2010) claim that no model can outperform all of the other
models for Brent and WTI markets across different loss functions. They find the
nonlinear GARCH models, which are capable of capturing long-memory and asym-
metric volatility, exhibit solid forecasting accuracy, especially in over longer time
periods. Mohammadi and Su (2010) considered oil spot prices in eleven markets
and compared the forecasting accuracy of four GARCH-class models under two loss
functions.

As opposed to the energy commodity volatility that has been widely studied, there
is only a limited number of papers dealing with energy price risk management. Hung
et al. (2008) highlight the importance of selecting the appropriate distribution in a
GARCH volatility context. They found that the VaR of crude oil and oil products is
adequately captured by fat-tailed distributions. Marimoutou et al. (2009) found that
extreme value based models perform well in the oil markets and that they offer a major
improvement over the traditional (non-parametric and parametric) methods. Bunn
et al. (2013) showed that a structural linear quantile regression model outperforms
skewed t GARCH and CAViaR models regarding the accuracy of out-of-sample
forecasts. A number of authors found long range memory in energy returns and report
as their top VaR performers models based on this characteristic (Aloui 2008; Mabrouk
2011). In recent studies Žiković et al. (2015) and Žiković and Tomas Žiković (2016)
analysed the statistical significance of the differences in performance of a wide range
of VaR models by employing a simulation-based methodology. VaR/ETL model
performance was tested on Natural gas, Brent, WTI, coal, uranium yellow cake and
heating oil contracts. They found that for a large number of different VaR models
there is no statistical difference in performance. Overall the findings reported in the
VaR and ETL literature on the topic of energy commodities are not conclusive. A
similar situation and findings can also be found in the electricity price forecasting
literature.
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We add to previous research on energy risk measurement by investigating whether
there are some identifiable common model features that yield consistently superior
results under both risk metrics and at the same time investigate whether there is any
significant statistical difference in performance of analysed VaR/ETL models.

The rest of the paper is organized in the following manner: Sect. 15.2 presents
the data and the methodology, with emphasis on risk ranking procedure that is used
in our analysis. Section 15.3 presents and discusses the VaR and ETL backtesting
results. Section 15.4 concludes.

15.2 Methodology and Data

We analyze the performance of 10 VaR and 7 ETL models with their definitions sum-
marized in Table 15.1. Tested VaR models are: simple moving average (VCV), the
RiskMetrics approach, historical simulation (HS 100, 250 and HS 500; the number
indicates the window length used to compute VaR), mirrored historical simulation
(MHS 100, 250 and MHS 500), BRW (Boudoukh, Richardson, Whitelaw) simula-
tion with the usually used decay factors of 0.97 and 0.99 and the approach proposed
by Žiković and Aktan (2011) with individually optimized decay factors, GARCH
model, filtered historical simulation (FHS), Hull and White (1998) approach and the
conditional EVT approach (EVT GARCH) using the generalized Pareto distribution
(GPD). Tested ETL models are: VCV (Gumbel and Frchet distribution), RiskMetrics
(Gumbel distribution), bootstrapped historical simulation, bootstrapped mirrored his-
torical simulation, bootstrapped BRW and FHS approach and conditional extreme
value (EVT-GARCH) approach. For validation purposes we employ the log-daily
spot returns on natural gas (NG1 Henry Hub), Brent, WTI, uranium 5% yellow cake
(UXA1), heating oil (HO1 NYMEX) and US low sulphur coal - Big Sandy Barge
Fob (COALBGSD).

In the risk management arena there are several approaches to testing whether a risk
model is superior to others. Some of them are: Diebold and Mariano (1995) Equal
Predictive Ability (EPA), White (2000) Reality Check test (RC) and Hansen (2005)
Superior Predictive Ability (SPA). All of them investigate whether any alternative
forecast is better than the benchmark, or in another way, whether the best alternative
forecasting model is better than the benchmark. This question can be addressed by
testing the hypothesis that the benchmark is not inferior to any alternative forecast.
Using such tests is useful for exploring if there is a better forecasting model than
the one currently used. We employ the methodology for comparing VaR model
performance developed by Žiković and Filer (2013) allowing for consistent ranking
of competing VaR models based on several general assumptions.

To implement the forecast evaluation proposed by Žiković and Filer (2013) it
is necessary to specify the loss function. A number of loss functions have been
proposed in the risk management literature. A very intuitive, simple and symmetric
loss function was proposed by Lopez (1999). It allows for the sizes of tail losses
to influence the models final rating. Risk model that generates the same number of
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errors but higher tail losses than an alternative one would generate higher values
under this size adjusted loss function. The ranking procedure consists of five steps:

• Fitting an ARMA-GARCH model to the analysed time series in order to obtain IID
observations. Estimating the empirical CDF of the non-tail distributional regions
using a suitable kernel (e.g. Epanechnikov kernel). Kernel smooths the CDF esti-
mates, eliminating the staircase pattern of unsmoothed sample CDFs.

• Finding the upper and lower thresholds such that someF percentage of the residuals
is reserved for each tail. Fitting the generalized Pareto distribution (GPD) to the
extreme residuals in each tail.

• Generating N simulated paths for the residuals from the obtained semi-parametric
distribution (each path is T observations long) and adding the ARMA-GARCH
model to the residuals to obtain N x T simulated returns.

• Calculating VaR for each of the N x T simulated returns for each VaR model and N
Lopez scores for each of the N simulated return pairs, for every tested VaR model.

• Comparing if the mean values of the Lopez scores for different VaR models differ
significantly. For this purpose a non-parametric Kruskal-Wallis test is employed.

Kruskal-Wallis test makes only mild assumptions about the data and is appropriate
when the distribution of the data is non-normal. The assumption behind this test is
that the measurements come from a continuous distribution. The test is based on an
analysis of the variance using the ranks, not the individual observations themselves.
The limitation of this approach is the assumption that the description of the central
mass and the tails of the process distribution are adequate i.e. that the underlying
process is well described by the recorded realization. This is not an unusual assump-
tion and is made in all the models that are used in practice. By simulating the data
generating process in the above described way, stochastic randomness is allowed in
the data set. Limitations are not stricter than the ones usually used.

Returns are collected from the Bloomberg website for the period January 1st, 2005
through January 1st 2016. The analysed period is divided into two parts: the period
from January 2005 to January 2012 was used to calculate distributional/volatility
parameters and VaR/ETL starting values. The second period, consisting of 1.000
trading days, from January 2012 to January 1st 2016, was used to perform out-
of-the-sample backtesting. The only exception to this rule was applied to uranium
UXA1 series since it starts on May 7th 2007. VaR and ETL figures are calculated for
a one-day ahead long position and 99% confidence level. ETL model performance
is evaluated according to the root mean squared error (RMSE) and Blanco and Ihle
(1998) loss function. The analysed VaR models are tested by using: Kupiec (1995)
test, Christoffersen (1998) independence (IND) test and Lopez size adjusted tests. In
the applied two-stage backtesting procedure, the best performing VaR model must
first satisfy both the Kupiec (1995) and Christoffersen (1998) IND tests and then
provide the minimal deviation from the expected value of losses by minimizing the
Lopez (1999) error statistics.
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15.3 Backtesting Results

All of the analysed energy commodities’ time series show asymmetry, leptokurtosis
and heteroskedasticity, with pronounced autoregression indicating periodicity in the
daily returns. Based on the AIC and BIC results the best GARCH representation of
volatility (predominantly GED and Students t distribution) was used to capture the
dynamics of data-generating processes of each energy commodity. The asymmetry
parameter in GARCH models was found to be significant only for WTI oil. In the case
of WTI oil spot prices the asymmetry parameter, controlling the asymmetric impact
of positive and negative shocks on the conditional variance, indicates significantly
higher conditional volatility after positive shocks. For the correct application of
extreme value theory based models (EVT) the crucial point is the estimation of the
tail index. Estimation of the tail index is tightly linked to the threshold value u that
the modeller defines as the level above/bellow which returns are considered extreme.
The threshold value for each index was determined by comparing the Hill estimator
with the mean excess plot and the quantile-quantile (QQ) plot. The same procedure
is applied to IID innovations required for the implementation of the EVT-GARCH
model (McNeil and Frey 2000). The Hill estimator, QQ and mean excess plots, as
well as the maximum likelihood estimates indicate that the tail indexes for energy
commodities are equal to or greater than zero. This means that energy commodities
are characterized by significant leptokurtosis and that the GPD fitted to the tails
belong to Gumbel domain of attraction.

Out of sample VaR model performance according to Kupiec (1995) test, Christof-
fersen (1998) IND tests, Lopez size adjusted score and average VaR values for natural
gas (NG), Brent, WTI, heating oil (HO), uranium (UR) and US coal at 99% confi-
dence level is presented in Tables 15.2, 15.3 and 15.4.

In Table 15.5, grey cells represent VaR models with lowest average VaR values
irrespective of their backtesting performance (more than one figure is reported when
the statistics do not differ significantly). Yellow cells represent the VaR model with
lowest average VaR values which satisfy the Kupiec (1995) and the Christoffersen
(1998) independence test.

The VaR backtesting results from Tables 15.2 to 15.5 are to a large degree con-
sistent. A wide range of models satisfied the Kupiec (1995) coverage criteria (MHS,
BRW and EVT-GARCH models). Christoffersen (1998) IND test i.e. errors do not
bunch together, making their exceptions IID, was problematic in cases of uranium
and coal, where almost all of the models failed, with the exception of MHS and
EVT GARCH models. Overall only the MHS250 and EVT-GARCH satisfied both
the Kupiec and Christoffersen test across all the commodities. The worst performers
were the VCV and RiskMetrics. Coal and uranium presented the biggest challenge
in forecasting VaR, a fact that can be attributed to their low liquidity and stale prices.
Although independence of VaR errors is not required under any regulatory rules,
in practice this characteristic is important. Dependence of errors is crucial for the
financial stability since bunched errors can deplete capital reserves much faster than
the simple underestimations of risk. From the security standpoint EVT based models
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Table 15.2 Kupiec backtesting results at 99% confidence level, period: 1.000 days up to January
1st 2016

NG BRENT WTI HO UR COAL

HS 100 0.01 0.00 0.00 0.00 0.00 0.00

HS 250 0.02 0.25 0.11 0.14 0.00 0.05

HS 500 0.17 0.85 0.73 0.66 0.66 0.08

MHS 100 0.22 0.27 0.34 0.28 0.03 0.45

MHS 250 0.60 0.91 0.68 0.89 0.33 0.67

MHS 500 0.94 0.96 0.83 0.91 0.82 0.82

BRW λ = 0.97 0.00 0.05 0.05 0.03 0.05 0.03

BRW λ = 0.99 0.12 0.54 0.54 0.40 0.51 0.36

BRW λ =opt 1.00 1.00 1.00 1.00 0.78 0.62

VCV 0.04 0.03 0.08 0.03 0.00 0.00

Risk Metrics 0.21 0.01 0.00 0.03 0.00 0.01

GARCH 0.41 0.05 0.05 0.03 0.08 0.08

FHS 0.97 0.54 0.51 0.81 1.00 0.07

HW EWMA 0.00 0.00 0.00 0.00 0.00 0.13

Gumbel GARCH 1.00 0.81 1.00 1.00 1.00 0.39

Frechet GARCH 1.00 1.00 1.00 1.00 1.00 1.00

Table 15.3 Christoffersen independence (IND) backtesting results at 99% confidence level, period:
1.000 days up to January 1st 2016

NG BRENT WTI HO UR COAL

HS 100 0.33 0.34 0.31 0.30 0.00 0.32

HS 250 0.24 0.58 0.52 0.47 0.02 0.41

HS 500 0.45 0.72 0.82 0.70 0.04 0.08

MHS 100 0.59 0.55 0.55 0.51 0.04 0.37

MHS 250 0.70 0.81 0.67 0.72 0.14 0.60

MHS 500 0.86 0.83 0.80 0.89 0.14 0.62

BRW λ = 0.97 0.24 0.32 0.17 0.25 0.02 0.41

BRW λ = 0.99 0.51 0.72 0.55 0.55 0.04 0.54

BRW λ =opt 0.90 0.88 0.90 0.89 0.04 0.73

VCV 0.14 0.32 0.42 0.53 0.00 0.00

Risk Metrics 0.51 0.50 0.26 0.30 0.02 0.00

GARCH 0.69 0.31 0.32 0.35 0.19 0.08

FHS 0.87 0.79 0.60 0.70 0.88 0.02

HW EWMA 0.16 0.22 0.26 0.73 0.00 0.30

Gumbel GARCH NaN 0.68 NaN 0.82 NaN 1.00

Frechet GARCH NaN 0.91 NaN 0.90 NaN 0.00
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Table 15.4 Lopez test scores at 99% confidence level, period: 1.000 days up to January 1st 2016

NG BRENT WTI HO UR COAL

HS 100 9.74 10.67 9.33 9.21 19.33 8.31

HS 250 6.73 1.02 3.65 2.16 9.29 6.30

HS 500 2.13 -4.42 -1.22 -2.87 -2.87 4.27

MHS 100 2.34 2.52 0.06 0.15 6.24 -0.81

MHS 250 -1.76 -5.45 -1.67 -3.87 0.19 -1.86

MHS 500 -4.55 -7.04 -3.55 -4.89 -4.94 -2.90

BRW λ = 0.97 9.65 6.85 7.93 10.18 11.22 4.21

BRW λ = 0.99 3.43 -1.86 -0.92 0.13 0.20 1.20

BRW λ =opt -7.00 -9.03 -8.99 -7.95 -2.85 -0.83

VCV 5.77 5.96 4.17 1.17 16.36 11.40

Risk Metrics 2.33 12.11 10.22 11.18 23.39 15.47

GARCH 0.09 9.44 7.17 6.17 14.31 11.33

FHS -7.04 -0.95 -0.92 -2.88 -7.99 7.30

HW EWMA 10.04 10.67 8.15 16.20 10.09 3.23

Gumbel GARCH -10.00 -3.05 -10.00 -8.14 -10.00 0.07

Frechet GARCH -10.00 -8.12 -10.00 -9.00 -10.00 -10.00

Table 15.5 Average VaR values (%) at 99% confidence level, period: 1.000 days up to January 1st

2016

NG BRENT WTI HO UR COAL

HS 100 4.92 3.19 3.69 3.44 2.38 2.24

HS 250 5.44 3.77 4.37 3.98 2.71 2.78

HS 500 6.91 4.97 5.36 4.57 3.88 5.98

MHS 100 6.05 3.75 4.18 3.77 3.42 3.94

MHS 250 6.97 4.08 4.70 3.98 3.85 4.63

MHS 500 8.99 5.02 6.22 5.21 5.53 7.84

BRW λ = 0, 97 5.23 3.46 3.78 3.98 2.72 2.86

BRW λ = 0, 99 6.65 3.79 4.21 4.05 3.18 3.75

BRW λ = opt 8.48 4.53 5.65 4.93 3.51 3.02

VCV 6.37 3.41 3.90 3.52 1.97 2.06

Risk Metrics 5.89 3.12 3.14 3.34 1.87 1.64

GARCH 6.00 3.10 3.16 3.32 1.84 2.18

FHS 6.85 3.61 4.34 4.01 4.87 2.44

HW EWMA 7.54 3.87 4.72 5.02 5.26 6.53

Gumbel GARCH 8.02 4.25 5.23 4.95 2.52 2.86

Frechet GARCH 10.27 6.55 7.96 7.02 3.77 4.54
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Table 15.6 RMSE ETL backtesting results at 99% confidence level. period: 1.000 days up to
January 1st 2016

WTI BRENT NG HO COAL UR

Frechet GARCH RM 0.17 0.09 0.20 0.07 0.05 0.06

Gumbel GARCH RM 0.07 0.04 0.11 0.03 0.04 0.03

Bootstrap FHS 0.02 0.03 0.09 0.03 0.03 0.04

Frechet VCV 0.21 0.08 0.15 0.08 0.03 0.04

Gumbel VCV 0.06 0.05 0.09 0.04 0.03 0.05

Bootstrap HS250 0.04 0.04 0.06 0.03 0.03 0.05

Bootstrap HS500 0.04 0.04 0.05 0.03 0.05 0.06

Bootstrap MHS250 0.03 0.06 0.04 0.05 0.04 0.05

Bootstrap MHS500 0.05 0.05 0.05 0.04 0.05 0.07

Bootstrap BRW 0.04 0.05 0.08 0.05 0.03 0.06

RM Gumbel 0.05 0.04 0.09 0.05 0.04 0.04

Table 15.7 Modified Blanco-Ihle ETL backtesting results at 99% confidence level. period: 1.000
days up to January 1st 2016

WTI BRENT NG HO COAL UR

Frechet GARCH RM 2.78 1.68 1.57 1.28 0.78 1.02

Gumbel GARCH RM 0.43 0.42 0.57 0.41 0.31 0.31

Bootstrap FHS 0.14 0.19 0.48 0.20 0.35 0.72

Frechet VCV 2.96 1.72 1.43 1.05 0.63 0.96

Gumbel VCV 0.49 0.53 0.52 0.38 0.31 0.31

Bootstrap HS250 0.25 0.17 0.50 0.30 0.70 0.37

Bootstrap HS500 0.22 0.17 0.38 0.22 0.70 0.29

Bootstrap MHS250 0.19 0.31 0.16 0.38 0.38 0.37

Bootstrap MHS500 0.19 0.28 0.19 0.30 0.25 0.21

Bootstrap BRW 0.25 0.29 0.38 0.31 0.40 0.45

RM Gumbel 0.40 0.43 0.50 0.41 0.32 0.41

are the only acceptable ones, sonly due to uranium IID errors issue. Results of the
Lopez test favour the MHS (100 and 250), BRW (0.99 and optimized) and FHS
models. Similar results are also found for the average VaR values, with BRW (opti-
mized), MHS100 and FHS being the highest ranked models. EVT-GARCH model
performed very well with regards to security, providing very safe and independent
VaR forecasts, but it is overestimating the risk and thus tends to hurt the lowest
cost/profitability criteria.

The results of the overall ETL model performance, at 99% confidence level, for
the selected energy commodities are presented in Tables 15.6 and 15.7.
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The results of the ETL model comparison at 99% level are somewhat more con-
clusive than the VaR figures. According to the RMSE statistic, bootstrapped FHS
ETL model provided a superior fit to the extreme losses. The worst performers are
the bootstrapped VCV, EVT-GARCH model with Frchet distribution (except for
uranium). According to the Blanco-Ihle statistic the best performers are the boot-
strapped FHS and the bootstrapped MHS500 model. The worst performers are the
bootstrapped VCV and EVT-GARCH models.

From the obtained results we can conclude that the more advanced semiparamet-
ric VaR/ETL models, using conditional volatility and extreme tails, are required to
capture the true level of risk in the energy markets. These results are, to an extent,
in line with the results of Hung et al. (2008). They also emphasise the need of inte-
grating fat tails into VaR forecasting. With regards to the performance of EVT based
models we find similar results to Marimoutou et al. (2009) that reports that EVT
performs superiorly over the traditional VaR models.

To further analyse the true performance of VaR in the energy markets we apply
the methodology by Žiković and Filer (2013) to test whether there is any significant
difference in the performance of the tested VaR models. The data is simulated based
on the distribution of returns in the period 2012–2016. For each commodity we
perform 3.000 simulations with the window length of 1.000 days. Lopez size adjusted
score used in the evaluation gives the best performance to the model whose score is
closest to zero. After obtaining 3.000 Lopez size adjusted scores for each VaR model
and for each of six energy commodities we test for the existence of differences among
the tested VaR models by using a Kruskal-Wallis test. Simulation results are reported
in Table 15.8.

In case when the simulated mean value of the VaR model score lies outside of the
95% confidence bands of all the other tested VaR models, it is ranked according to its
relative performance. If a model is not significantly different from the other models
it shares the same ranking. From Table 15.8 we see that for a large number of VaR
models there is no statistically significant difference when measured by the selected
loss function. When looking at the overall performance for the tested commodities the
best performing VaR models that are statistically significant are the filtered historical
simulation (FHS) and semiparametric BRW model with optimized λ. These models
are followed by the conditional EVT GARCH model and simple nonparametric MHS
model and BRW simulation with fixed λ. The worst performance, measured by the
distance from expected losses is recorded for Hull-White, RiskMetrics, VCV and
HS model with shortest window length. Although we tested ten VaR models (with
16 combinations) on a sample of six energy commodities the number of statistically
different VaR models never surpasses five.

A second finding that can be pointed out is that there is consistency in the perfor-
mance of risk models under VaR and ETL metrics. According to VaR performance
we can point out four superior models: FHS, BRW, EVT-GARCH and MHS. ETL
estimation yielded only two superior models: MHS and FHS. It is obvious that best
performing VaR and ETL models overlap. Both MHS and FHS models can be viewed
as semiparametric model i.e. models not making a priori parametrical assumptions
about the distribution of returns, but using the empirical returns. These findings are,



15 Measuring Financial Risk in Energy Markets 305

Table 15.8 Lopez size adjusted score ranking of simulated VaR model performance (3.000 simu-
lations, 1.000 days forecasting horizon)

NG BRENT WTI HO UR COAL Total

HS 100 5 5 5 5 5 5 7

HS 250 3 2 3 2 4 3 4

HS 500 2 2 2 2 4 3 4

MHS 100 4 5 5 3 4 2 6

MHS 250 2 3 3 3 3 2 4

MHS 500 1 2 2 3 3 3 3

BRW λ = 0.97 4 3 4 4 3 4 6

BRW λ = 0.99 2 1 2 1 1 2 2

BRW λ = opt 1 1 1 1 1 2 1

VCV 5 5 5 4 5 4 7

Risk Metrics 5 5 5 4 4 4 7

GARCH 1 4 5 3 3 3 5

FHS 1 1 1 1 1 3 1

HW EWMA 5 5 5 5 4 4 7

Gumbel GARCH 1 2 2 1 1 1 1

Frechet GARCH 3 3 3 2 1 2 3

to a significant extent, in line with the findings of Žiković et al. (2015) and Žiković
and Tomas Žiković (2016).

Similar results regarding the performance of FHS model can be found in Costello
et al. (2008) which report that FHS performs superiorly to wide spread models, mainly
due to relaxed distribution assumptions and treatment of volatility clustering. In the
case of MHS the key to its success is in creating a bootstrapped empirical series and
using order statistics, with the only assumption being that the past will be similar to
the future. In the case of FHS it is a more elaborate scheme of using GARCH volatility
and EVT innovations to rescale the empirical returns. In regards to GARCH volatility
modelling and using GARCH volatility as part of a parametric risk model Fan et al.
(2008) claim superior performance, a result which we cannot confirm. During the
dynamic volatility modelling phase we also tested the performance of fractionally
integrated parametric GARCH (FIGARCH) models but although providing excellent
fit to the in-sample volatility, out-of-the-sample performance was unremarkable, a
finding which is contrary to the results obtained by Aloui and Mabrouk (2010) and
Mabrouk (2011) about the superiority of FIGARCH models.
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15.4 Conclusion

We investigate common risk model features that result in superior forecasting results
under both VaR and ETL metrics in the energy commodities markets. Our goal was
not only to find the models that accurately forecast VaR figures but also give the best
approximation to the tail losses i.e. minimize the deviation between ETL forecasts and
extreme losses. VaR backtesting results showed that only MHS250 and EVT-GARCH
satisfied both the Kupiec and Christoffersen test across all the tested commodities.
These findings confirm the findings of Marimoutou et al. (2009) regarding the EVT
performance. The worst performers were the VCV and RiskMetrics models failing
both tests. Coal and uranium presented the biggest challenge in forecasting VaR at
higher confidence level, a fact that can be attributed to the low liquidity and stale
prices of these commodities. Results of the Lopez test clearly favour the MHS, BRW
and FHS models. Similar results are also found for the average VaR values, a finding
that confirms the Costello et al. (2008) results. EVT-GARCH performed very well
with regards to security, providing very safe and independent VaR forecasts, but
sometimes overestimates the risk and thus tends to hurt the lowest cost/profitability
criteria. This finding is in line with the conclusions by Žiković et al. (2015) which
find that advanced models based on conditional EVT, as well as the nonparametric
models, yield very robust and consistent results.

The simulation study shows that for a large number of different VaR models there
is no statistical difference measured by Lopez size adjusted loss function. Overall,
statistically significant top performers are FHS model, semiparametric BRW simula-
tion, conditional EVT GARCH and nonparametric MHS model. Simpler parametric
models, e.g. VCV, Hull-White and RiskMetrics were the worst performers in our
comparison. It is also interesting to note that although historical simulation based
models are clearly theoretically inferior to EVT in risk estimation, their empirical
track record is impressive. This finding may suggest that during the analysed period
there were a large number of extreme events that allowed the simpler nonparamet-
ric models to correctly asses the true level of risk. After performing our simulation
based test we conclude that there is sufficient statistically significant evidence that
models like FHS, BRW, EVT-GARCH and MHS perform superiorly to other mod-
els. Advanced VaR models based on conditional EVT, FHS and BRW simulation
as well as the very simple, nonparametric models such as MHS yield very robust
and consistent results. Models that do not fall into these groups have shown poor
performance in the energy markets.

The results of the ETL model comparison are similar to VaR backtesting results.
According to RMSE and Blanco-Ihle statistics bootstrapped FHS and MHS models
provided the closes fit to the expected value of extreme losses. The worst performers
under both statistics were the VCV and Frchet EVT-GARCH model. Both VaR and
ETL results show that advanced semiparametric models, with conditional volatility
and extreme tails, are required to capture the true level of risk for energy commodities.
There is significant overlapping in the performance of tested models under both risk
measures. The most consistent top performers under both risk measure, FHS and
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MHS models, do not a priori assume the parametrical distribution of returns but use
instead the empirical returns. In both cases the common factor is the use of empirical
distribution without a priori parameterization of return distribution.
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Chapter 16

Risk Analysis of Cryptocurrency

as an Alternative Asset Class

L. Guo and X.J. Li

Abstract The purpose of this study is to analyze the risk of cryptocurrencies, as an

alternative investment. In particular, we find the wealth distribution of the cryptocur-

rency, evaluate its corresponding effects on the market and analyze other risk factors

resulting in the death of altcoins. The paper concludes that the closer the right tail of

wealth distribution approaching the Power-Law model, the more stable the market

will be. This result is quite useful for investors to make decisions when investing in

cryptocurrencies.

16.1 Introduction

As a representative of cryptocurrency, Bitcoin was developed by an anonymous

hacker in 2009. Within 4 years’ development, the price of Bitcoin had reached higher

than $1,000 by the end of 2013. What’s more, the total number of Bitcoins that can be

mined has been limited within 21 million while it appears to be a more complicated

question to calculate the amount of gold that can be mined. As a result, during the

period when the gold price has collapsed, Bitcoin appears to be a better store of value

than gold for investors.

Besides, Bitcoin can be used to make online purchases via mobile phones or other

devices. Popular with the techno tribe, the currency is regarded as being beyond the

reach of government regulation – the anonymous founder of Bitcoin introduced the

idea of a distributed block chain to prevent the counterfeiting of Bitcoin (Lee et al.

2014). The block chain, also known as the public ledger, is a technical innovation

that solves a 20-year-old problem called the General Byzantine problem (Lam et al.

2014), which is a problem all distributed systems face. For instance, how to reach
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consensus in a system without any central authorities instructions or how to prevent

the double spending of digital currency.

In 2014, the Bitcoin Central partnered with a French bank becoming a registered

Payment Services Provider (PSP) under the European Union Law. It means that

Bitcoins now can offer debit cards, account insurance and other banking facilities to

the Bitcoin owners. This phenomenon became a breaking news because the amount of

Bitcoin value is becoming infinite due to the excess demand of market which changed

drastically from its original value. Nowadays Bitcoin has already gained worldwide

attention, as people can sell products or services overseas by using Bitcoins and

make profits immediately. There are more than twelve million Bitcoin users including

digital miners, traders and small business owners.

Meanwhile, similar cryptocurrencies or alternative cryptocurrencies (aka. alt-

coins) are proliferating, and there are now over 400 active altcoins in the market

(Lee et al. 2014). Examples of popular cryptocurrencies include Bitcoin, Ripple,

Litecoin and Dogecoin (Coinmarketcap.com, 2014). However, many of the coins are

ephemeral and become inactive shortly after they are launched. Such coins are known

as dead coins e.g. Auroracoin (AUR), Alcohoin (ALC), 2chcoin (2ch), 66coin (66).

Digital currencies can potentially play a major role in lowering the cost of financial

services and enable financial institutions to reach out to the unbanked banking and

the under-banked (Ignacio et al. 2014). As a payment system, digital currency can

contribute to the banking and achieve the goal of financial inclusion for being advo-

cated by 90 countries in the Maya Declaration as well as the Bill and Melinda Gates

Foundation (gatesfoundation.org, 2014). Therefore, it is important to investigate the

factors that determine the success of a coin as we can then avoid similar pitfalls in

the future when constructing a new coin, which can benefit the less privileged and

those at the bottom of the wealth pyramid (XiangJun et al. 2014). To this end, we

have decided to compare the different characteristics of Auroracoin and Bitcoin to

figure out those risk factors leading to the death of Auroracoin but the success of

Bitcoin. The present paper adopts a complete empirical methodology for detecting

Power-Laws introduced by (Clauset et al. 2009). To verify whether the whole range

of the upper tails of wealth distributions obeys the Power-Law model. We estimate

both the Power-Law exponent and the lower bound on the Power-Law behavior.

The paper is organized as follows: Sect. 16.2 shortly describes our data sets drawn

from the original blockchain and other sources. Section 16.3 presents the statistical

framework introduced by Clauset et al. which is used for measuring and analyzing

Power-Law behavior in empirical data. Section 16.4 is the empirical analysis while

Sect. 16.5 serves as the conclusion.

16.2 Data Collection

Data are collected mainly through the following four methods:



16 Risk Analysis of Cryptocurrency as an Alternative Asset Class 311

16.2.1 Parse the Balance Information of Each Address from

the Downloaded Block Chain Using C++

A source code written in C++ by John W. Ratcliff was used and modified. Basically,

this program provides us the balance information of each address which can be used

to find the wealth distribution of both Bitcoin and Auroracoin.

16.2.2 Parse Other Fundamental Variables of Bitcoin

Blockchain.info contains all the fundamental variables of Bitcoin market except

for the balance information. The data include market price, transaction volume,

developer’s revenue, etc. All the data were downloaded in CSV format and R 3.1.2

was used to group the data together and calculate the aggregate where appropriate.

16.2.3 Historical Price Data for Auroracoin Are from a Data

Provider Named Myip

Myip is a data provider that stores the historical price and transaction volumes of

Auroracoin. Additionally, different from Bitcoin, the block chain explorer of Auro-

racoin doesn’t have the historical price, so we have to use this data provider to collect

the historical price of Auroracoin.

16.2.4 Parse Other Fundamental Variables of Auroracoin

from Online Block Chain Explorer Using Python

We obtained the data of other fundamental variables of Auroracoin from the Block

Chain Explorer. Figure 16.1 shows how the webpage looks like.

16.3 Methodology

In the beginning, we believe it is necessary for a coin’s wealth distribution to follow

a pareto optimal distribution. The reason is that, in the initial stage, we expect to see

“Top few” users to develop the market and their wealth of the coin takes large position

of the overall market. Indeed, the existence of “Top few” users are necessary for a

coin to survive and gain popularity, hence shaping the overall wealth distribution

to follow a power law. So in the paper, the first hypothesis we want to test is that
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Fig. 16.1 Original Data from Blockchain

whether the wealth distribution is one of the key factors that determine the success

of a crypto currency. In fact, by plotting the wealth distribution of both Bitcoin

and Auroracoin, we find the right tail of both wealth distribution seem to follow

the Power-Law model. Hence, in the paper, we fit the wealth distribution using the

Power-Law model. There’s no denying that there are some other candidates to fit the

wealth distribution, such as Log-normal distribution, which has a similar pattern as

Power-Law. However, as a preliminary study, we do not focus on the comparison of

density functions.

In order to find the Power-Law behavior in wealth distributions we use a toolbox

proposed by Clauset et al. (2009). A density of continuous Power-Law model is given

by

p(x) =
α − 1

xmin

( x

xmin

)−α
(16.1)

The maximum likelihood estimator (MLE) of the Power-Law exponent, α̂, is

α̂ = 1 + n
{

∞
∑

i=1

log
xi

xmin

}

(16.2)

where xi ; i = 1, 2 . . . n are independent observations such that xi > xmin . In the

meantime, xmin can be found by minimizing the well-known Kolmogorov–Smirnov

(KS) statistic, which can be defined as follow:



16 Risk Analysis of Cryptocurrency as an Alternative Asset Class 313

K S = max
x≥xmin

|S(x) − P(x)| (16.3)

In the equation above, S(x) stands for the CDF of the data for the observations with

value at least xmin while P(x) represents the CDF for the Power-Law model that best

fits the data in the region x ≥ xmin . Hence, the lower bound on the Power-Law, xmin:

xmin = argmin
xmin

K S (16.4)

The next step in measuring Power-Law involves testing goodness of fit. A positive

result of such a test allows us to conclude that a Power-Law model is consistent with

a given data set. Following Clauset et al. again, we start with fitting a Power-Law

model to data using the MLE for α and the KS-based estimator for xmin . Meanwhile,

we have the KS statistic for this MLE fitting. Next, we generate the synthetic data

sets with scaling parameter α̂ and lower bound xmin from previous step. To be more

specific, the synthetic data sets have the Power-Law model above the estimated xmin

and have the same non-Power-Law distribution as the original data set below x̂min .

Then, Power-Law models are fitted to each of the generated data sets with the KS

statistics calculated. Finally, we define the p-value of the test as the fraction of data

sets for which their own KS statistics are larger than the KS found in the empirical

data set. Hence, the Power-Law hypothesis is rejected if this p-value is smaller than

the chosen threshold. In the reference (Clauset et al. 2009), Clauset et al. rules out

the Power-Law model if the estimated p-value for the test is smaller than 0.1.

16.4 Empirical Results

In this section, we compared the wealth distribution of two different altcoins, Bitcoin

and Auroracoin to illustrate the importance of achieving a Pareto optimal distribution.

After that, we further test the predicting power of wealth distribution, defined as the

frequency distribution of public addresses of the digital currency under study. In

particular, we examine the following hypothesis that the wealth distribution within

the system has predictive power over its lifespan and price. On top of that, we also

study the different characteristics of both coins and document the important features

that lead to the survivorship of the cryptocurrency.

16.4.1 Data Visualization

We first plot a histogram of frequency of public addresses of Bitcoin and Auroracoin,

as we have shown in Figs. 16.2 and 16.3.

It seems that Auroracoin does not appear to follow a distinct Power-Law distri-

bution while the distribution of Bitcoin does. In the meantime, although the wealth
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<1m 1−5m 5−10m 50−100m 500−1000m 5−10 10−50 100−500 1−5k 5−10k 50−150k

Fig. 16.2 Bitcoin Histogram. XFGHistWealthD

<1m 1−5m 5−10m 50−100m 500−1000m 5−10 10−50 100−500 1−5k 5−10k 50−1000k

Fig. 16.3 Auroracoin Histogram. XFGHistWealthD

https://github.com/QuantLet/XFG3/blob/master/XFGHistWealthD
https://github.com/QuantLet/XFG3/blob/master/XFGHistWealthD
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10−50 50−100 100−500 500−1k 1−5k 5−10k 10−50k 50−1000k

Fig. 16.4 Right Tail Auroracoin Histogram. XFGHistWealthD

distribution in Auroracoin does not exhibit Power-Law distribution on the whole, the

tail part of the distribution does seem to follow a Power-Law distribution (shown in

Fig. 16.4). Therefore, when calculating the α, xmin is set free and is automatically

determined by the programme to minimize the Kolmogorov–Smirnov statistics. The

motivation is to investigate if the Power-Law parameters for the right side of the dis-

tribution have any explanatory power for those fundamental variables of cryptocur-

rencies. Table 16.1 lists the fundamental variables treated as dependent variables in

the following regression.

16.4.2 Power-Law Estimation and Empirical Analysis

In this section, we fit the wealth distribution of Bitcoin and Auroracoin using the

Power-Law model. For the Auroracoin, only the right tail seems to follow the

Power-Law pattern so the xmin is optimally selected by minimizing the KS statistic

in the Auroracoin case.

Shown in Figs. 16.5 and 16.6, α of Bitcoin increases smoothly while α of Aurora-

coin goes up and down. What’s more, the α shows no significant predicting power on

those fundamental variables in terms of Bitcoin while for the Auroracoin, its signifi-

cant predicting power is not only limited to the price movements but also applicable

to other fundamental variables with average R-square = 0.65, much larger than that

https://github.com/QuantLet/XFG3/blob/master/XFGHistWealthD
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Table 16.1 Variable list

Variable list Definition

Days destroyed A measure of the transaction volume of Cryptocurrency. If someone has
100 BTC that they received a week ago and they spend it then 700 bitcoin
days have been destroyed

MB.1 The total size of all block headers and transactions

Difficulty A measure of how difficult it is to find a new block compared to the easiest
it can ever be

Hashrate The estimated number of billions of hashes per second the bitcoin network
is performing

Market cap Total number of bitcoins in circulation * the market price in USD

Market price Price of Cryptocurrency

Miners revenue (Number of bitcoins mined per day + transaction fees) * market price

Network deficit Difference between transaction fees and cost of bitcoin mining

No. of deals Total number of unique bitcoin transactions per day

Ratio Transaction volume/USD exchange volume

Fig. 16.5 Bitcoin Power-Law Estimation using whole sample. XFGPowerLawAlpha

Fig. 16.6 Auroracoin Power-Law Estimation (Right Tail). XFGPowerLawAlpha

https://github.com/QuantLet/XFG3/blob/master/XFGPowerLawAlpha
https://github.com/QuantLet/XFG3/blob/master/XFGPowerLawAlpha
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Fig. 16.7 Goodness of Fit of Auroracoin (Right Tail). XFGPowerLawP

of Bitcoin. In addition, all the fundamental variables have been taken first-order dif-

ference so that the variables put into regressions are stationary. We are surprised

about these findings as it contradicts to our expectations. Auroracoin is short lived

after it is launched while Bitcoin is one of successful crytos in the market. Why

the distribution of a dead coin play an important role in determining the market of

a deadcoin but has no effects on Bitcoin? To answer this question, we further test

the goodness of fit on wealth distributions of Bitcoin and Auroracoin respectively.

Results suggest that none of the models survives – for Bitcoin, all p-values across the

whole sample period are 0, indicating the whole sample doesn’t follow Power-Law.

Similarly, with respect to the Auroracoin, p-values above 10% level only occur in 3

months, suggesting that only 3 of them can be fitted using the Power-Law distribution

(see Fig. 16.7).

Given the goodness of fit, we know that the α̂ in both cases cannot reflect the

wealth distribution very well. In Bitcoin case, α̂ has no prediction power over the

market which is not due to the wealth distributions lacking impact on the market

but because the α̂ cannot stand for the wealth distribution of Bitcoin market. As

for the Auroracoin case, it becomes an another story – although the fitted α cannot

reflect the wealth distribution of Auroracoin, it shows significant prediction power

on those fundamental variables. Looking into the regression, we note that only 8

observations are included in the regression, so the estimation results may not be so

convincing. Later, daily data instead of monthly data should be tested in order to

expand the samples. Running the Power-Law model for a long time made us neglect

the checking of regression results using daily data.

Keeping in mind that we have already selected the optimal xmin for Auroracoin to

fit the Power-Law distribution but not for Bitcoin, it is safe to conclude that wealth

distribution of Auroracoin market doesn’t follow the Power-Law distribution and

for the Bitcoin market, using the whole sample to fit the wealth distribution is inap-

propriate. Therefore, we try to improve the model by analyzing the right tail wealth

distribution of Bitcoin with xmin optimally selected in order to improve the goodness

of fit of the Power-Law model.

https://github.com/QuantLet/XFG3/blob/master/XFGPowerLawP
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Fig. 16.8 Bitcoin Power-Law Estimation (Right Tail). XFGPowerLawAlpha

Fig. 16.9 Goodness of Fit of Bitcoin (Right Tail). XFGPowerLawP

Figures 16.8 and 16.9 suggest that although the overall wealth distribution of Bit-

coin doesn’t follow Power-Law, its right tail perfectly fits the Power-Law distribution.

Besides, the p-value varies dramatically before the end of 2012, while the majority

of p-values are above 10% level, indicating that the right tail wealth distribution of

Bitcoin market follows the Power-Law distribution well. However, the p-value drops

below 5% level after September 2012, implying that the wealth distribution deviates

a lot from the Power-Law distribution. This is quite consistent with the sharp increase

of price from the end of 2012. It is believed that when the price explodes, the Bitcoin

market will begin to deviate from its previous state due to the extraordinary amount

of investors in the market. As we know, there are multiple big events happening dur-

ing that time. On 15th Nov, 2012, Wordpress as one of the 25 most popular domains

on the web, its move paved the way for later retail ventures of Bitcoin. On 25th

March, 2013, the Eurogroup, the European Commission, the European Central Bank

and the International Monetary Fund orchestrated the 10 billion bailout to fortify the

flagging Cypriot economy. As a result, the increasing trading volume broke Mt. Gox

in April. Then on 18 Nov, 2013, US Senate held a hearing of Bitcoin. Afterwards

and most importantly, Bitcoin was accepted in China. Chinese people were free to

https://github.com/QuantLet/XFG3/blob/master/XFGPowerLawAlpha
https://github.com/QuantLet/XFG3/blob/master/XFGPowerLawP
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participate in the Bitcoin market finally. BTC China achieved a trading volume more

than twice of the second place in Mt. Gox. Within one year, the Bitcoin price jumped

from $11.04 to $1075.16. Of course, all these events exerted profound effects on the

Bitcoin market and thus causing the wealth distribution deviating from its previous

status.

In terms of α value, we note that it jumps to 32.06 in Sep 2011. That is because

earlier that month, Mt. Gox was hacked. A copy of the users’ database was leaked and

was used to launch attacks against accounts held by users of the MyBitcoin online

wallet service, because they shared the same password on both sites. The attack

resulted in thefts of over 4,019 BTC from about 600 wallets. Consequently, the

Bitcoin market experienced a downward trend in the following months. Even large

Bitcoin holders began to sell the coins, increasing the diversification of the Bitcoins.

As the α parameter stands for the diversification of the wealth distribution – a higher

α means that wealth is more diversified. As a matter of fact, Alpha increases a lot in

the following months. However, the wealth distribution of that time still follows the

Power-Law. We believe that this event exerted a great influence on the market, but

it is not strong enough to disrupt the whole market, which is different from the case

when the market price exploded to $1000 with big events (Tables 16.2 and 16.3).

However, the Auroracoin doesn’t follow the Power-Law distribution even consid-

ering the right tail of wealth distribution. In the wealth distribution plots in Fig. 16.3,

the air-dropped amount is seldom spent by the recipients for Auroracoin. The value of

Auroracoin is thus severely undermined. What’s worse, since the coins are acquired

for free as opposed to arduous processes such as mining or trading, people do not

show appreciation for the coin, which leads to its death. Nonetheless, for Bitcoin, as

mining is required, people do think the coin worth a certain amount of value. Over

time, the wealth distribution of Bitcoin edges towards Pareto distribution (in previ-

ous analysis, we have already concluded that wealth distribution of Bitcoin followed

Power-Law and so in this part we mainly refer to the optimal Power-Law distribution

indicated by the α). Pareto is a mathematical model that the wealth distribution in

the real world follows, and more and more people start to use it for various reasons,

such as analyzing international fund transfer. It can be easily verified – excluding

in high volatile periods when big events happen and the price explodes. The Power-

Law parameter, α, has been increasing evidenced by Fig. 16.8. On the contrary, the

wealth distribution of Auroracoin has not shown many changes during 2014 and cer-

tainly does not follow the Power-Law distribution (Fig. 16.7). Therefore for a coin to

survive and gain popularity, attaining Pareto distribution is absolutely helpful.

However, using the truncated sample, the α̂ still does not show any significant

predicting power over those fundamental variables (Table 16.4). The reason is that,

for most months, the xmin is too large to be considered in the majority of observations.

For example, in some months, less than 100 observations are counted when fitting

the Power-Law distribution while the whole sample size for that month amounts to

20 million. In other words, α has lost some generality if the truncated sample size is

used. That is why the diversification of wealth, treating α as a proxy, has no predicting

power over fundamental variables, while the right tail of wealth distribution follows

the Power-Law model.
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So now we relax our hypothesis by considering another indicators, the goodness

of fit and p-value. The smaller the p-value is, the more the true wealth distribu-

tion deviates from the Power-Law distribution. Then the new hypothesis becomes

that whether the extent of wealth distribution approaching the optimal Power-Law

distribution has its significant predicting power on the Bitcoin market.

Similar to α, we test the predicting power using sample where the goodness of

fit is above 10% and the results suggest that increase in the goodness of fit has no

significant impacts on the fundamental variables, evidenced by Table 16.5. Namely,

whether the right tail of wealth distribution approaches the Power-Law rarely affects

the Bitcoin market. The result may not be reliable since the sample we used in

the regression only covers the periods that appear to follow the Power-Law. The

p-values are relative stable across the time and the overall market environment.

Hence, the effect of approaching Pareto optimal distribution cannot be fully reflected

by the market during those periods. After that, we reestimate the predicting power of

Clauset’s goodness of fit by including in the non-Power-Law periods. This is another

great advantage of using p-value to measure the whole market. In the case of α, we

are restricted to do so since when P drops below 0.1, the wealth distribution doesn’t

follow Power-Law and hence α loses its ability to explain the market. Generally

speaking, the goodness of fit has more general effects on the cryptocurrency market.

We mainly test the following most related two hypothesis:

1. Whether a wealth distribution that follows Power-Law does improve the sta-

bility of the market.

2. Whether approaching the Power-Law distribution can significantly reduce the

fluctuations of the market.

Table 16.6 shows the estimation results of the state variable (according to Clauset’s

criterion, we regard the periods whose goodness of fit below the 10% as non-Power-

Law periods). Especially, this dummy variable exhibits significant predicting power

on those fundamental variables. What’s more, we note that the sign of the coefficient

of this dummy variable is always opposite to the sign of the constant. Namely, when

the right tail wealth distribution follows the Power-Law model, the changes of market

cap, market price, transaction fees and other fundamental variables become much

smaller compared to the changes during the non-Power-Law periods. This indicates

that when the wealth distribution follows Power-Law, the Bitcoin market would

become more stable than otherwise.

Above result is consistent with what we observed in Fig. 16.9 — evidenced by

the strong price explosion starting from the 3rd quarter of 2013. We suspect that the

wealth distribution doesn’t follow Power-Law distribution during that period. In fact,

it can be easily verified by analyzing the goodness of fit –. After the middle of 2013,

p-value drops to almost 0, indicating that the previous stability has been disrupted.

We may also note that the p-value drops below 10% level during the 4th quarter of

2011, which is also consistent with the Mt. Gox hacker event (Table 16.7).

From the above analysis, again, we claim that during the non-Power-Law period,

the price movements or other fundamental variables can hardly be explained by the

wealth distribution parameter, α, since the stability has been disrupted. However, this



16 Risk Analysis of Cryptocurrency as an Alternative Asset Class 325

T
a
b

le
1
6
.6

P
re

d
ic

ti
n
g

p
o
w

er
o
f

g
o
o
d
n
es

s
o
f

fi
t

(D
u
m

m
y
)

D
ay

s
d
es

tr
o
y
ed

(∗
1

0
6
)

M
B

.1
D

if
fi

cu
lt

y

(∗
1

0
6
)

H
as

h
ra

te
(∗

1
0

6
)

M
ar

k
et

ca
p

(∗
1

0
6
)

M
ar

k
et

p
ri

ce
M

in
er

s
re

v
en

u
e

(∗
1

0
6
)

N
et

w
o
rk

d
efi

ci
t

(∗
1

0
6
)

N
o
.

o
f

tr
an

sa
ct

io
n
s

(∗
1

0
6
)

R
at

io

(I
n
te

rc
ep

t)
4
,
7

2
9
.4

7
∗
∗
∗

1
3
,
3

4
1
.7

9
∗
∗
∗

1
,
2

2
0
.4

6
∗
∗
∗

1
0
.9

0
∗
∗
∗

1
2
,
2

1
1
.2

8
∗
∗
∗

1
,
0

0
1
.9

4
∗
∗
∗

4
.4

8
∗
∗
∗

−
4
.4

5
∗
∗
∗

3
0
.7

2
∗
∗
∗

2
3

5
.4

6
∗
∗
∗

(7
8

0
.8

7
)

(1
,
7

3
4
.6

8
)

(4
1

2
.3

9
)

(3
.7

0
)

(4
,
4

4
3
.4

2
)

(3
6

6
.3

4
)

(1
.6

1
)

(1
.6

0
)

(3
.9

9
)

(2
7
.9

9
)

P
s

−
3
,
1

0
6
.0

3
∗
∗
∗

−
1

1
,
5

3
4
.0

5
∗
∗
∗

−
1
,
2

1
8
.8

1
∗
∗

−
1

0
.8

9
∗
∗

−
1

2
,
0

9
4
.9

8
∗
∗

−
9

8
8
.8

7
∗
∗

−
4
.3

7
∗
∗

4
.3

4
∗
∗

−
2

5
.8

1
∗
∗
∗

−
1

4
2
.9

8
∗
∗
∗

(1
,
0

1
3
.8

4
)

(2
,
2

5
2
.2

2
)

(5
3

5
.4

2
)

(4
.8

0
)

(5
,
7

6
9
.1

2
)

(4
7

5
.6

3
)

(2
.0

9
)

(2
.0

8
)

(5
.1

9
)

(3
6
.3

5
)

R
2

0
.1

4
0
.3

2
0
.0

8
0
.0

8
0
.0

7
0
.0

7
0
.0

7
0
.0

7
0
.3

0
0
.2

1

A
d
j.

R
2

0
.1

3
0
.3

0
0
.0

7
0
.0

7
0
.0

6
0
.0

5
0
.0

5
0
.0

5
0
.2

9
0
.2

0

N
u

m
.

o
b

s.
5

9
5

9
5

9
5

9
5

9
5

9
5

9
5

9
5

9
5

9

R
M

S
E

3
,8

2
5
.4

6
8
,4

9
8
.1

4
2
,0

2
0
.2

8
1
8
.1

2
2
1
,7

6
8
.2

2
1
,7

9
4
.6

8
7
.8

8
7
.8

4
1
9
.5

7
1

3
7

.1
5

∗
∗
∗

p
<

0
.0

1
,
∗
∗

p
<

0
.0

5
,
∗

p
<

0
.1

X
F

G
P

o
w

er
L

aw
P



326 L. Guo and X.J. Li

T
a
b

le
1
6
.7

P
re

d
ic

ti
n
g

p
o
w

er
o
f

g
o
o
d
n
es

s
o
f

fi
t

D
ay

s
d
es

tr
o
y
ed

(∗
1

0
6
)

M
B

.1
D

if
fi

cu
lt

y

(∗
1

0
6
)

H
as

h
ra

te
(∗

1
0

6
)

M
ar

k
et

ca
p

(∗
1

0
6
)

M
ar

k
et

p
ri

ce
M

in
er

s
re

v
en

u
e

(∗
1

0
6
)

N
et

w
o
rk

d
efi

ci
t

(∗
1

0
6
)

N
o
.

o
f

tr
an

sa
ct

io
n
s

(∗
1

0
6
)

R
at

io

(I
n
te

rc
ep

t)
4
,
5

6
1
.2

6
∗
∗
∗

1
2
,
7

1
8
.8

7
∗
∗
∗

1
,
1

6
4
.8

9
∗
∗
∗

1
0
.4

0
∗
∗
∗

1
1
,
6

3
7
.7

2
∗
∗
∗

9
5

3
.3

4
∗
∗

4
.2

5
∗
∗
∗

−
4
.2

2
∗
∗
∗

2
9
.3

1
∗
∗
∗

2
2

7
.4

3
∗
∗
∗

(7
6

9
.8

3
)

(1
,
7

3
6
.2

6
)

(4
0

4
.4

6
)

(3
.6

3
)

(4
,
3

5
6
.7

2
)

(3
5

9
.2

5
)

(1
.5

8
)

(1
.5

7
)

(3
.9

9
)

(2
7
.7

8
)

P
_
v
al

u
e

−
3
,
2

2
5
.6

3
∗
∗
∗

−
1

1
,
9

8
1
.5

2
∗
∗
∗

−
1
,
2

8
5
.8

6
∗
∗

−
1

1
.4

8
∗
∗

−
1

2
,
7

1
7
.6

6
∗

−
1
,
0

3
6
.5

0
∗

−
4
.5

5
∗

4
.5

2
∗

−
2

6
.7

9
∗
∗
∗

−
1

4
7
.9

3
∗
∗
∗

(1
,
1

2
3
.7

4
)

(2
,
5

3
4
.4

7
)

(5
9

0
.4

0
)

(5
.2

9
)

(6
,
3

5
9
.6

0
)

(5
2

4
.4

0
)

(2
.3

0
)

(2
.2

9
)

(5
.8

3
)

(4
0
.5

5
)

R
2

0
.1

3
0
.2

8
0
.0

8
0
.0

8
0
.0

7
0
.0

6
0
.0

6
0
.0

6
0
.2

7
0
.1

9

A
d
j.

R
2

0
.1

1
0
.2

7
0
.0

6
0
.0

6
0
.0

5
0
.0

5
0
.0

5
0
.0

5
0
.2

6
0
.1

8

N
u

m
.

o
b

s.
5

9
5

9
5

9
5

9
5

9
5

9
5

9
5

9
5

9
5

9

R
M

S
E

3
,8

5
8
.9

3
8
,7

0
3
.3

3
2
,0

2
7
.4

4
1
8
.1

8
2
1
,8

3
8
.8

2
1
,8

0
0
.7

9
7
.9

1
7
,8

6
2
0
,0

2
1

3
9

.2
4

∗
∗
∗

p
<

0
.0

1
,
∗
∗

p
<

0
.0

5
,
∗

p
<

0
.1

X
F

G
P

o
w

er
L

aw
P



16 Risk Analysis of Cryptocurrency as an Alternative Asset Class 327

fluctuations have been well captured by the Clauset’s goodness of fit. Afterwards, we

continue to test the second hypothesis that during the whole sample period, whether

approaching the Power-Law distribution which is indicated by the p-value, has any

predicting power over those fundamental variables. The estimation results have been

shown as below:

As expected, all the fundamental variables listed above are significantly affected

by the p-value and the change of directions also meet our expectation – when

p-value increases or the wealth distribution approaches the Power-Law distribution,

the changes of transaction fees, the price movements, market cap and other funda-

mental variables become much smaller than otherwise, suggesting that the Bitcoin

market becomes more and more stable when the wealth distribution approaches the

Power-Law distribution.

16.5 Other Risk Analysis

Apart from those shortages reflected by the Auroracoin, more reasons are required

to be considered as dangers for a coin to survive. The current section provides more

aspects to investigate these reasons.

To begin with, many coins died because of badly designed mechanism, especially

the block reward scheme. It could be a too complicated scheme, for example, Aircoin

(AIR) adjusts the block rewards in response to the exchange rate in order to target a

gradually rising exchange rate. The reward halving time was supposed to be about

once per five years, therefore it is hard to comprehend given the mining reward

adjustments to target an exchange rate. Or like the case of EToken (ETOK) where

the block reward for the latter block such as the ten thousandth block. People tended

to abandon the block once it was mined, eventually leading to the death of the project.

Secondly, the developer issues. Some coins like BellaCoin (BELA) died since its

developer is completely unknown. Some coins faded simply because the developer

disappeared after launching the coin, for example, the Melange (SPICE). Besides,

the anonymous developer of the BatCoin claimed to be attacked during the night of

3rd–4th, April in his home and hospitalized by an assailant intent on stealing the

premined coins. If that’s true, then clearly he was not anonymous to the assailant. If

that’s false, then he made a small but respectable profit on the premine. Either way,

he hindered the development and support of Batcoin like a hot rock.

Thirdly, there are moral issues causing the death of coins. On one hand, pure IPO

scams occurred (NeonCoin, VisaCoin, etc.) where developer just disappear with

the money. On the other hand, plenty of coins are malware. For instance, Nerdcoin

contained a key logger and a wallet stealer and Oreocoin contained a remote desktop

exploit. Moreover, there is a keyboard recorder in the Thecoin and the developer

apparently hoped to get the passwords people were using for their wallets.

To add up, the uniqueness of a coin also affects its survival. Some coins died

because they are clones or forks of other coins. To name a few, FairBrix is clone of

Tenebrix and FairQuark is clone of Quark. Nucoin, Nutcoin and Stop are all forks
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of NXT. Moreover, duplicate names can jeopardize a coins prosperity, too. Taking

Aircoin (AIR) as an example, apparently there are at least two different coins both

named Aircoin and both trading with the symbol AIR. One is effectively dead and

the other apparently alive as of 12th, July 2014.

Last but not least, some coins are dead due to the bad listed timing, usually

too early. For instance, Global Denomination (GDN) is unwisely initially listed on

exchanges while its market cap was still under $5000. Muniti (MUN) went for

exchanges way too quickly, even before there was any market capitalization to dis-

tinguish them from the thousands of dead coins.

16.6 Conclusion

In the paper, we are trying to figure out what characteristics are necessary for a

cryptocurrency to be a good alternative investment. To be more specific, first, we

believe that for a coin to survive and gain popularity, achieving a Pareto optimal

distribution is absolutely helpful. Hence we start looking at the wealth distribution

and characterizing it by fitting a Power-Law model. To verify the hypothesis, we

consider two Cryptocurrencies in two situations – one with the whole sample size

and the other with the truncated sample size by optimally selecting the right tail of the

wealth distribution. We find that for Auroracoin market, although the fitted parameter

α using the truncated sample size has significant predicting power on both the price

movement, changes of market cap, and the other fundamental variables posted on

Blockchain web. It doesn’t follow Power-Law suggested by Clauset’s goodness of

fit. While in terms of Bitcoin market, it becomes a little tricky. We find that using the

whole sample size, it doesn’t follow Power-Law model at all and the fitted parameter

α has no predicting power on those fundamental variables. After that, we fit the

truncated sample size and find that the Power-Law fits the wealth distribution very

well. Nevertheless, the parameter, α, still shows no predicting power over those

fundamental variables. After further looking into the Bitcoin market, we relax the

hypothesis by considering whether the wealth distribution which follows Power-Law

has significant predicting power over the market and instead of using parameter α.

We choose Clauset’s goodness of fit which is more appropriate to measure the whole

market. As expected, the predicting power is significant and the closer the wealth

distribution approaches the Power-Law, the more stable of the Bitcoin market will be.

In addition, a better crypto-currency usually entails the following characteristics.

i. Known creator;

ii. Some work is required to get the coin;

iii. Coins are not distributed for free;

iv. Attains Pareto-distribution;

v. Appropriate reward scheme;

vi. Good credit of developer;

vii. Uniqueness;

viii. Good launching time.
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With this knowledge in mind, countries can use this information to create a suc-

cessful cryptocurrency when they ever desire to make use of digital currency in the

future. Our preliminary study of two digital currencies needs to be expanded to more

digital and crypto currencies in order to draw a firmer conclusion. Nevertheless,

while Clauset’s goodness of fit can be used and has some predictive power over the

fundamental variables of a cryptocurrency, it may not be sufficient enough. We may

need to combine the indicator with other explanatory variables to yield more accurate

predictions. In the future, we could continue to monitor the goodness of fit in order

to verify the results obtained in this research paper and to expand the study to other

coins. Furthermore, weekly instead of monthly data could be used for Auroracoin in

order to further validate the significant level of goodness of fit in relation with the

Bitcoin market. Finally, we would compare more density functions to fit the wealth

distribution instead of using only the Power-Law model.
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Chapter 17

Time Varying Quantile Lasso

Wolfgang Karl Härdle, W. Wang and L. Zboňáková

Abstract In the present chapter we study the dynamics of penalization parameter λ

of the least absolute shrinkage and selection operator (Lasso) method proposed by

Tibshirani (J Roy Stat Soc Series B 58:267–288, 1996) and extended into quantile

regression context by Li and Zhu (J Comput Graph Stat 17:1–23, 2008). The dynamic

behaviour of the parameter λ can be observed when the model is assumed to vary

over time and therefore the fitting is performed with the use of moving windows. The

proposal of investigating time series of λ and its dependency on model characteristics

was brought into focus by Härdle et al. (J Econom 192:499–513, 2016), which was

a foundation of FinancialRiskMeter. Following the ideas behind the two aforemen-

tioned projects, we use the derivation of the formula for the penalization parameter

λ as a result of the optimization problem. This reveals three possible effects driving

λ; variance of the error term, correlation structure of the covariates and number of

nonzero coefficients of the model. Our aim is to disentangle these three effects and

investigate their relationship with the tuning parameter λ, which is conducted by a

simulation study. After dealing with the theoretical impact of the three model char-

acteristics on λ, empirical application is performed and the idea of implementing the

parameter λ into a systemic risk measure is presented.
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17.1 Introduction

The least absolute shrinkage and selection operator (Lasso) method as proposed

by Tibshirani (1996) has been widely used and extended during recent years. The

literature presents a method which simultaneously completes the task of model selec-

tion and parameter estimation, while studying its consistency. A key factor for the

estimation precision is choosing a tuning parameter which controls the degree of

penalization. Although there is much literature on Lasso, including a time series

context, the time variation of the tuning parameter remains unexplored.

Here we explain dynamics of the penalization parameter λ and how it can be used

in financial practice, particularly when dealing with systemic risk. Let us assume

for the moment a linear model with a vector of responses Y = (Y1, Y2, . . . , Yn)
⊤, a

vector of parameters β = (β1, . . . ,βp)
⊤, an (n × p) design matrix X , which might

be either fixed or random, and a vector of independent identically distributed errors

ε with zero mean and variance σ2. Then the objective function of Lasso is

min
β

⎧
⎨
⎩

1

2

n∑

i=1

(
Yi − X⊤

i β
)2 + λ

p∑

j=1

|β j |

⎫
⎬
⎭ , (17.1)

with tuning parameter λ ≥ 0 and X i , 0 ≤ i ≤ n, denoting row vectors of X . In

(17.1) one assumes that the columns of the matrix X = (xi j )i=1,...,n, j=1,...,p have

been standardized, i.e. n−1
∑n

i=1 xi j = 0 and n−1
∑n

i=1 x2
i j = 1. Solving this type of

penalized least squares problem with L1-penalization allows some of the coefficients

of the model to shrink to 0. This is a highly advantageous property when dealing

with high-dimensional data, since variable selection and shrinkage of coefficients

are performed simultaneously. Shrinking some of the coefficients to exactly 0 also

improves the interpretability of the fitted model.

Modification of Lasso in quantile regression (Koenker and Basset 1978) studied

by Li and Zhu (2008) and Belloni and Chernozhukov (2011) solves the optimization

problem with

min
β

⎧
⎨
⎩

1

2

n∑

i=1

ρτ

(
Yi − X⊤

i β
)
+ λ

p∑

j=1

|β j |

⎫
⎬
⎭ , (17.2)

where τ ∈ (0, 1) and ρτ (·) is the check function

ρτ (x) =
{

τ · x if x > 0;
−(1 − τ ) · x otherwise.

(17.3)

The Lasso models described above account for independent observations. However,

there is much literature on the Lasso in time series context as well. For the univariate

case we refer to Wang et al. (2007), Nardi and Rinaldo (2011) and Chen and Chan
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Fig. 17.1 Time series of λ

taken from

FinancialRiskMeter (http://

frm.wiwi.hu-berlin.de),

normalized to interval (0,1)

(2011). The case of multivariate time series, particularly vector autoregression, was

covered by e.g. Hsu et al. (2008).

Lasso in quantile regression has been used by Härdle et al. (2016) to model tail

event dependencies among U.S. financial companies. Based on the penalization para-

meters the FinancialRiskMeter (FRM), http://frm.wiwi.hu-berlin.de, was developed,

see Fig. 17.1. The value of the averaged penalization parameter λ was elevated during

the financial crises. This fact led us to the question we indicated above; what drives

the penalization parameter λ and what are the dynamics of λ? We investigate this by

simulation study and empirical application.

The computations included in this chapter were performed in the environment of

R software developed by R Core Team (2014) and the codes are available on http://

quantlet.de/d3/ia/.

17.2 Lasso Method

17.2.1 Lasso as an Optimization Problem

In this section we firstly follow Osborne et al. (2000) to derive formula for the

penalization parameter λ of the Lasso method when applied in linear regression

problems. Then we aim our focus on the representation of λ in penalized quantile

regression.

If we treat λ as a fixed value in the objective function of the penalized regression

f (β,λ) =

⎧
⎨
⎩

1

2

n∑

i=1

(
Yi − X⊤

i β
)2 + λ

p∑

j=1

|β j |

⎫
⎬
⎭ , (17.4)

http://frm.wiwi.hu-berlin.de
http://frm.wiwi.hu-berlin.de
http://frm.wiwi.hu-berlin.de
http://quantlet.de/d3/ia/
http://quantlet.de/d3/ia/
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then the function f (β,λ) is convex in parameter β. Moreover, with diverging β we

observe that f (β,λ) → ∞. Hence there exists at least one minimum of the function

f (·,λ). According to Osborne (1985) this minimum is attained in β̂(λ) if and only

if the null-vector 0 ∈ R
p is an element of the subdifferential

∂ f (β,λ)

∂β
= −X⊤(Y − Xβ) + λu(β), (17.5)

where u(β) = (u1(β), . . . , u p(β))⊤ is defined as u j (β) = 1 if β j > 0, u j (β) = −1

if β j < 0 and u j (β) ∈ [−1, 1] if β j = 0. Then, for β̂(λ) as a minimizer of f (β,λ)

the following has to be satisfied

0 = −X⊤{Y − X β̂(λ)} + λu(β̂(λ)), (17.6)

Here we denote the estimator of a parameter vector β as a function of the penalization

parameter λ. This dependency follows from the formulation of the penalized regres-

sion method and its objective function (17.4), where we first select λ and then search

for β̂(λ) which minimizes (17.4). Using the fact that u(β)⊤β =
∑p

j=1 |β j | = ||β||1,

where || · ||1 denotes L1-norm of a p-dimensional vector, (17.6) can be further rewrit-

ten in the formula

λ =
{Y − X β̂(λ)}⊤ X β̂(λ)

||β̂(λ)||1
. (17.7)

The identity (17.7) leads us to consider possible constituents which influence the

value of parameter λ and therein its dynamics when treated in a time-dependent

framework. Here we propose to study three effects which are related to the size of λ:

1. size of residuals of the model;

2. absolute size of the coefficients of the model, ||β||1;

3. singularity of a matrix X⊤ X .

The second effect can also be translated into the effect of a number of nonzero para-

meters the so-called active set of the model, q = ||β||0 =
∑p

j=1 I(β j �= 0), where

|| · ||0 stands for L0-norm on R
p and I(·) is an indicator function. As a mea-

sure of the third structure, the condition number κ(X⊤ X) defined as the ratio

φmax(X⊤ X)/φmin(X⊤ X), the maximum and the minimum eigenvalue of the matrix

X⊤ X , can be used.

Similarly, one can derive formulae for the penalization parameter λ in a quantile

regression problem (17.2) and (17.3). Following Li and Zhu (2008)

λ =
θ⊤ X β̂(λ)

||β̂(λ)||1
, (17.8)

where θ = (θ1, . . . , θn)
⊤ satisfies the following
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θi =

⎧
⎨
⎩

τ if Yi − X⊤
i β̂(λ) > 0;

−(1 − τ ) if Yi − X⊤
i β̂(λ) < 0;

∈ (−(1 − τ ), τ ) if Yi − X⊤
i β̂(λ) = 0.

(17.9)

Hence, we observe that λ depends on cardinality of the active set q, which is again

influenced by the correlation structure of the design matrix. Direct impact of the

variance of residuals disappears and only the sign of the residuals stays in effect.

However, when looking at Fig. 17.2 one can see similarities between the time series

of λ and historic values of the implied volatility index (VIX) reported by the Chicago

Board Options Exchange. This fact leads us to believe that the dynamics of λ is also

influenced by the changes in the variance of model residuals.

17.2.2 Choosing the Penalization Parameter

In theory the equalities (17.7) and (17.8) hold for every solution of the Lasso opti-

mization problems (17.1) and (17.2) respectively, since first λ is chosen and after-

wards the model is fitted according to the given value of the penalization parameter.

One of the commonly used methods of choosing estimator of λ is cross-validation

in its three forms; k-fold, leave-one-out and generalized cross-validation method,

see e.g. Tibshirani (1996). As pointed out in Hastie et al. (2009), cross-validation is

a widely used method for estimation of prediction error. This feature is used when

estimating λ in Lasso method, where, on a grid of penalization parameters λ, the

one which minimizes estimated prediction error is chosen. However, as Leng et al.

(2006) argued in their work, methods of choosing penalization parameter based on

prediction accuracy are in general not consistent when variable selection is consid-

ered. The same argument was used by Wang et al. (2009) where they compared

the asymptotic behaviour of the generalized cross-validation to the one of Akaike’s

Fig. 17.2 Normalized

implied volatility index

(blue) and λ from

FinancialRiskMeter (red).

XFGTVP_LambdaVIX

https://github.com/QuantLet/XFG3/tree/master/XFGTVP_LambdaVIX
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information criterion (AIC); it is efficient if one is interested in the model error, but

inconsistent in selecting the true model.

The second widely used method of estimating λ is the Bayesian information

criterion (BIC). By β0 = (β01, . . . ,β0p)
⊤ we denote the true vector of coefficients of

the regression model and q0 defines the number of its nonzero elements, i.e. β0 j �= 0

for 1 ≤ j ≤ q0 and β0 j = 0 for j > q0. The permutation of the elements of β0 is

performed without loss of generality, so the previous notation holds. Secondly, by

S = { j1, . . . , jq} we denote an arbitrary model with XS = (X j1 , . . . , X jq ) ∈ R
n×q

as a design matrix associated with it. Vector of coefficients of a model S is βS =
(β j1 , . . . ,β jq )

⊤ and the model size is |S| = q. The true model is referred to by S0.

Using the notation from above, the BIC is written in the following form

BICS = log(̂σ2
S
) + |S|

log(n)

n
Cn, (17.10)

with σ̂2
S

= n−1SSES = infβS
(n−1||Y − XSβS ||22) where || · ||2 denotes L2-norm of

a vector and Cn is some positive constant. Wang and Leng (2007) prove the con-

sistency of (17.10) in selecting a true model also for a diverging parameter vector

dimension p and a true number of nonzero coefficients q0. This is shown in unpe-

nalized as well as in penalized regression models.

Modification of (17.10) in terms of a tuning parameter leads to

BICλ = log(̂σ2
λ) + |Sλ|

log(n)

n
Cn, (17.11)

where σ̂2
λ = n−1SSEλ = n−1||Y − X β̂(λ)||22 and Sλ = { j : β̂(λ) j �= 0}. The esti-

mation of the tuning parameter λ̂ is then chosen by minimizing (17.11) with

Cn = log{log(p)} or Cn =
√

n/p, see Chand (2012).

Consistency of the BICλ selector holds for the penalized regression methods such

as smoothly clipped absolute deviation (SCAD) method defined by Fan and Li (2001)

and adaptive Lasso introduced by Zou (2006). For the regular Lasso method by

Tibshirani (1996) the additional assumption on a design matrix X called irrepre-

sentable condition has to be fulfilled.

The aforementioned condition was presented by Zhao and Yu (2006). Firstly they

assumed that n−1 X⊤ X
p→ C , with C a positive definite matrix

C =
(

C11 C12

C21 C22

)
. (17.12)

Here C11 is a (q0 × q0) matrix that corresponds to the q0 active predictors and is

assumed to be invertible. Then the formulation of the irrepresentable condition is

∣∣[C21C−1
11 sgn(βS0

)
]

k

∣∣ ≤ 1, k = 1, . . . , p − q0. (17.13)
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Adopting the notation from above, q0 is a number of nonzero parameters in

the true model S0 and sgn(βS0
) = (sgn(β01), . . . , sgn(β0q0

))⊤ with sign function

sgn(β j ) = 1 if β j > 0, sgn(β j ) = −1 if β j < 0 and sgn(β j ) = 0 if β j = 0.

Modified selection criteria for penalized quantile regression which were used by

Li and Zhu (2008) are BIC for quantile regression presented by Koenker et al. (1994)

and generalized approximate cross-validation criterion (GACV) introduced by Yuan

(2006)

BIC(λ) = log

[
n−1

n∑

i=1

ρτ {Yi − X⊤
i β̂(λ)}

]
+

log(n)

2n
d̂f(λ), (17.14)

GACV(λ) =

n∑
i=1

ρτ {Yi − X⊤
i β̂(λ)}

n − d̂f(λ)
, (17.15)

where d̂f(λ) stands for the estimated effective dimension of the fitted model. Li

and Zhu (2008) argued that number of interpolated observations Yi denoted by E is

a plausible measure for this quantity, i.e. d̂f(λ) = |E |.

17.2.3 Algorithms to Solve Lasso

Finding a feasible solution of the optimization problems (17.1) and (17.2) can be

computationally demanding, since one has to check all of the combinations of values

of the tuning parameter λ and its respective model parameter estimates β̂(λ). Only

after all of the possible combinations are found, the particular method of choosing

λ̂ can be applied.

The first algorithm for finding solution of Lasso was presented by Tibshirani

(1996) in his work introducing the Lasso method itself. Then Osborne et al. (2000)

developed an algorithm which works not only for the case where p < n but also

n > p. In order to make the computation more efficient, Efron et al. (2004) proposed

the use of the least angle regression algorithm (LARS). The latter procedure is as

efficient as a single least squares fit and can also be used in cases where number of

parameters of the investigated model is much larger than the number of observations.

As a selection criterion of λ̂ for LARS, Efron et al. (2004) suggested to use C p-type

selection criterion. Zou et al. (2007) then defined model selection criteria such as

C p, Akaike information criterion (AIC) and BIC suitable for the Lasso framework.

Another approaches to find a path of Lasso solutions, particularly for the quantile

regression, were proposed by Belloni and Chernozhukov (2011) and Li and Zhu

(2008). The second one comes into focus in this chapter, since one is interested in

modeling tail event dependencies when dealing with systemic risk evaluations.
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17.3 Simulation Study

As derived in the previous section, the penalization parameter λ of the Lasso regres-

sion depends on three effects. The factors driving its dynamics are variance of the

error term of the model, conditionality of the matrix X⊤ X and absolute size of

the coefficients of the model, ||β||1. In this section we conduct simulations which

describe the relationships between these three effects and the parameter λ focusing

mainly on a quantile regression case. Our aim is to disentangle these effects and

find the way to explain behaviour of λ in dependency of the three aforementioned

elements.

17.3.1 Penalty λ Dependent on Variance σ
2

Firstly we investigate the effect of the size of variance σ2 of the error term ε on the

penalty parameter λ. According to the identity (17.7) λ is supposed to rise with higher

σ2 and vice versa. This holds for the linear regression problem, and as discussed

previously for the quantile regression as well. The evidence is visible from Fig. 17.2,

whereas when considering the formula (17.8) this dependency is not straightforward

to follow.

In our simulation study we use quantile regression model Y = Xβ + ε with a

vector of responses Y = (Y1, . . . , Yn)
⊤, a vector of parameters β = (β1, . . . ,βp)

⊤,

an (n × p) design matrix X and iid error term ε = (ε1, . . . , εn)
⊤ such that P(εi ≤

0|X i = x) = τ for almost every x ∈ R
p with τ ∈ (0, 1)denoting conditional quantile

of Y .

The design matrix X is simulated from the p-dimensional normal distribution

{X i }n
i=1 ∼ Np(0, �), (17.16)

where the elements of (p × p) covariance matrix � = (σi j )
p

i, j=1 are defined as fol-

lows

σi j = ρ|i− j | for i, j = 1, . . . , p, (17.17)

with ρ = 0.5 as in Tibshirani (1996). Here we select n = 600 and p = 100. In order

to study the effect of increased dispersion (in the error term ε) on λ, the vector of

parameters is set to

β0(100×1) = (1, 1, 1, 1, 1, 0, . . . , 0)⊤. (17.18)

The error term is simulated such that its variance changes after the observation

i0 = 300. We assume εi for i = 1, . . . , n to be independently distributed with asym-

metric Laplace distribution
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(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Fig. 17.3 Time series of λ̂ (blue), other model characteristics and their respective averages (red)

drawn from the 50 simulations with change of σi after i0 = 300, moving windows of length 80.

XFGTVP_LambdaSim

εi ∼
{

ALD(0, 1, 0.05), if i ≤ i0

ALD(0, 2, 0.05), i > i0
. (17.19)

The density of asymmetric Laplace distribution is

f (x |µ,σ, τ ) =
τ (1 − τ )

σ
exp

{
−

ρτ (x − µ)

σ

}
, (17.20)

with location parameter µ, scale parameter σ > 0, skewness parameter τ ∈ (0, 1) and

the check function ρτ (·) as defined in (17.3). The idea to use this type of distribution

comes from Lee et al. (2014).

We simulate 50 scenarios using the algorithm designed by Li and Zhu (2008)

and select λ̂ according to BIC (17.14). For model fitting we apply moving windows

technique to capture the dynamics of the tuning parameter λ. The size of the moving

window is set to be w = 80. Resulting values of λ̂ obtained by simulation settings

above are, together with other model characteristics of interest, captured in Fig. 17.3.

As can be seen from Fig. 17.3, the values of the estimated tuning parameter λ̂

are indeed increasing with higher variation σ2 of the error term. Number of nonzero

parameters q0 = ||β0||0 was set to be constant over all n = 600 observations and

https://github.com/QuantLet/XFG3/tree/master/XFGTVP_LambdaSim
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Table 17.1 Relative and

absolute change in averaged

values of λ̂ before and after

the change point i0 = 300

with starting value of the scale

parameter σi = 1 for i ≤ i0

σi i > i0

¯̂λend
¯̂λstart

¯̂λend − ¯̂λstart

1.1 1.061 0.027

1.2 1.084 0.037

1.3 1.112 0.050

1.4 1.135 0.060

1.5 1.144 0.064

1.6 1.162 0.072

1.7 1.169 0.075

1.8 1.177 0.079

1.9 1.187 0.083

2.0 1.199 0.089

also the level around which the condition number κ(X⊤ X) fluctuates stays constant.

However, the L1-norm of estimated model coefficients ||β̂(̂λ)||1 changes with higher

values of λ̂. Since that is an idea of the Lasso method itself, this can be seen as a

natural effect.

In order to study the size of impact of σ2 on λ we conducted a set of simulations,

where different values of scale parameter σ were used after the change point i0. The

starting value was defined as in the previous case, σ = 1, and the relative and absolute

change of average λ̂ were examined. Observed changes are noted in Table 17.1.

From Table 17.1 one can see that the penalization parameter λ̂ increases in depen-

dency of the change in the scale parameter σ of the distribution of the error term

in the assumed model. This conclusion of course corresponds to what we see from

Fig. 17.2. Again we use BIC as a selection criterion. However, as discussed before,

theoretically other methods yield the same dependency structure.

17.3.2 Penalty λ Dependent on Model Size q

The second effect driving the size of the penalization parameter λ is the number of

nonzero parameters q. In order to study this case, the design matrix X was again set

as in (17.16) and (17.17) with ρ = 0.5. The error term εi was simulated to have scale

σ = 1 for all 1 ≤ i ≤ n and the change in vector of model parameters β came into

focus. The number of nonzero parameters of the model was defined by setting β0 to

have the form

β0i =

⎧
⎨
⎩

(1, 1, 1, 1, 1, 0, . . . , 0)⊤, i ≤ i0

(1, 1, . . . , 1︸ ︷︷ ︸
10×

, 0, . . . , 0)⊤, i > i0. (17.21)

Thus, the first i0 simulated observations have five active parameters and the rest has

ten of them.
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The paths of the values of λ̂ obtained from the aforementioned simulation settings

are plotted in Fig. 17.4. Visible are also other characteristics of the model which we

are interested in to examine.

As expected from (17.8) defining λ, an increasing value of ||β̂(λ)||1 or q results

in a decreasing value of the tuning parameter λ. In this specific case ||β0||1 = q0.

From Fig. 17.4 one can see that the value of λ̂ decreased with higher q̂ .

To study the reaction of λ on the cardinality of the active set q, we performed

simulations with different changes of q after the observation i0, the starting value

was always q0 = 5. The results are summarized in Table 17.2. From Eq. (17.8) the

relationship between λ and ||β̂(λ)||0 as well as q is inversely proportional and values

in Table 17.2 correspond to this statement.

We may conclude that the cardinality of the active set q has a real impact on change

in value of λ. Since in (17.8) the effect of q is captured by the effect of ||β̂(λ)||1,

this is also of our interest. Another simulation was conducted to investigate the

impact of the L1-norm of the model coefficients. Previously the coefficients were

hard thresholded, i.e. cut off abruptly and set to be zero. Now the parameters are

allowed to decrease to zero more smoothly

(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Fig. 17.4 Time series of λ̂ (gray), other model characteristics and their respective averages (black)

drawn from the 50 simulations with change of q0 after i0 = 300, moving windows of length 80.

XFGTVP_LambdaSim

https://github.com/QuantLet/XFG3/tree/master/XFGTVP_LambdaSim
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Table 17.2 Relative and absolute change in averaged values of λ̂ before and after the change point

i0 = 300 with starting number of nonzero parameters q0i = 5 for i ≤ i0

q0i i > i0

¯̂λend
¯̂λstart

¯̂λend − ¯̂λstart

6 0.952 −0.021

7 0.922 −0.035

8 0.905 −0.043

9 0.862 −0.062

10 0.837 −0.073

15 0.736 −0.118

β0i =

⎧
⎨
⎩

(1, 1, . . . , 1︸ ︷︷ ︸
10×

, 0, . . . , 0)⊤, i ≤ i0

(1, 0.9, 0.8, . . . , 0.2, 0.1, 0, . . . , 0)⊤, i > i0,

(17.22)

i.e. ||β0i ||1 = 10 for i ≤ i0 and ||β0i ||1 = 5.5 for i > i0.

We put this simulation setting forward, because it seems more natural that the

effect of particular covariates fades away rather than disappears. Time series of model

characteristics of this case are to be found in Fig. 17.5. The relative and absolute

change of average λ̂ after the point i0 = 300 is 1.245 and 0.091 respectively.

17.3.3 Penalty λ Dependent on Design

We examine the dependency of the parameter λ on the design matrix X of the given

model through the characteristics called condition number of a matrix:

κ(X⊤ X) =
φmax(X⊤ X)

φmin(X⊤ X)
,

where φmax(·) and φmin(·) are the largest and the smallest eigenvalues of a matrix. If

the condition number κ is low the problem is called well-conditioned, matrices with

higher κ values are referred to as ill-conditioned. The condition number can help to

diagnose a multicollinearity issue. With the presence of multicollinearity, one can

expect more coefficients to be incorrectly defined as significant and therefore values

of q and ||β||1 to rise. This is in analogy to the situation described in the previous

subsection and regarding the formula (17.8) we expect the tuning parameter λ to

decrease with higher condition number of the matrix X⊤ X .

The simulation settings are as follows; parameterβ0 as in (17.18) and the error term

is iid with εi ∼ ALD(0, 1, 0.05) for 0 ≤ i ≤ n. The design matrix X is simulated

from (17.16) and (17.17), but here the parameter ρ is allowed to change after the
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(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Fig. 17.5 Time series of λ̂ (blue), other model characteristics and their respective averages (red)

drawn from the 50 simulations with change of ||β0i ||1 after i0 = 300, moving windows of length 80.

XFGTVP_BetaChange

Table 17.3 Relative and absolute change in averaged values of λ̂ before and after the change point

i0 = 300 with starting number of nonzero parameters ρi = 0 for i ≤ i0

ρi i > i0

¯̂λend
¯̂λstart

¯̂λend − ¯̂λstart

0.1 1.023 0.012

0.3 0.943 −0.028

0.5 0.890 −0.055

0.7 0.692 −0.155

0.9 0.750 −0.126

point i0 = 300. The case where ρi = 0 for i ≤ i0 and ρi = 0.5 for i > i0 is illustrated

in Fig. 17.6.

Indeed, our expectations presented above hold true. Increased correlation between

the covariates and with that increased condition number κ(X⊤ X) result in decreasing

values of the estimated tuning parameter λ̂. This case together with other simulated

changes in correlation structure between covariates are summarized in Table 17.3.

Starting value of ρ from (17.17) is always 0.

https://github.com/QuantLet/XFG3/tree/master/XFGTVP_BetaChange
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(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Fig. 17.6 Time series of λ̂ (gray), other model characteristics and their respective averages (black)

drawn from the 50 simulations with change of ρi after i0 = 300, moving windows of length 80.

XFGTVP_LambdaSim

17.3.4 All Factors Affecting the Value of λ

So far we investigated the effect of the change in the variance of error term σ2, in

structure of the vector of parameters β and in the correlation structure of the covariates

ceteris paribus. In this subsection we focus on all of the factors driving dynamics of

λ at once and examine the strength of their impact when combined together.

For each of the elements driving the dynamics of the penalization parameter λ

we simulated three cases. The values of interest either stayed constant, increased or

Table 17.4 Relative changes λ̂end /̂λstart as a result of combinations of changes in a model Relative

changes λ̂end /̂λstart as a result of combinations of changes in a model

σ2 ր σ2 → σ2 ց
κ ր κ → κ ց κ ր κ → κ ց κ ր κ → κ ց

q0 ր 0.884 1.101 1.311 0.783 0.843 1.003 0.659 0.710 0.841

q0 → 0.992 1.198 1.425 0.854 1.001 1.191 0.719 0.843 0.998

q0 ց 1.162 1.403 1.555 1.000 1.172 1.300 0.759 0.889 1.125

https://github.com/QuantLet/XFG3/tree/master/XFGTVP_LambdaSim
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decreased after the point i0 = 300. If constant, the scale parameter σ of the distri-

bution of the error term was set to be 1. Otherwise it increased from the value of 1

to 2 or decreased from 2 to the value of 1. Number of nonzero parameters was either

q0 = 5 for all n = 600 observations or it increased to the value q0 = 10 or decreased

from q0 = 10 to q0 = 5 after the point i0. The change of the design matrix was again

defined by the change of the correlation structure between corresponding covariates,

i.e. change of ρ from (17.17). For the constant case it was set to be ρ = 0.5, when

increased it had value 0.9 after the i0-th observation and for the decreasing case it

was ρ = 0.9 for i ≤ i0 and ρ = 0.5 for i > i0.

Results of all combinations of the changes in the factors having impact on λ are

summarized in Table 17.4. There we can see that the effects can overpower each other

when combined. This holds particularly for the cases, when the condition number

κ is increased and number of nonzero parameters q0 decreased and vice versa. This

fact can be explained by the issue of multicollinearity as discussed before.

Empirically, when considering the situation on financial markets (particularly

modeling of stock prices), increased volatility indicates elevated risk. Parameter λ

is sensitive to the changes in degree of variation and therefore can be bound to the

risk evaluation problem. Another aspect indicating time series of λ as a measure of

systemic risk is its dependency on interconnectedness of financial institutions, which

can be measured by the number of nonzero parameters in estimated model and their

magnitude.

17.4 Empirical Analysis

17.4.1 Data Description

In order to be able to apply our insight to the FinancialRiskMeter (http://frm.wiwi.

hu-berlin.de), we closely follow the choice of data of Härdle et al. (2016). Due to

the computational efficiency, our dataset consists of daily stock returns of the first

100 largest U.S. financial companies ordered by market capitalization according to

NASDAQ company list. In the FRM case it is 200. The stock returns are downloaded

from Yahoo Finance and the list of the corresponding companies is to be found in

Table 17.6.

As a characterization of the general state of the economy, six macroprudential

variables are used as covariates in our model settings. These are implied volatility

index reported by the Chicago Board Options Exchange, daily S&P500 index returns,

daily Dow Jones U.S. Real Estate index returns, changes in the three-month Treasury

bill rate, changes in the slope of the yield curve corresponding to the yield spread

between the ten-year Treasury rate and the three-month bill rate and, finally, changes

in the credit spread between BAA-rated bonds and the Treasury rate. The former three

are obtained from Yahoo Finance and the latter three from the Federal Reserve Board.

The macro state variables are summarized in Table 17.7. The data are downloaded

http://frm.wiwi.hu-berlin.de
http://frm.wiwi.hu-berlin.de
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with help of FRM_download_data. All of the variables are recorded in the time

interval from 03 January 2007 to 17 August 2016. For the macroprudential variables

we use 1 day lagged values.

17.4.2 Construction of Time Series of λ̂

In order to capture interdependencies among the companies and to reduce the dimen-

sionality of the data set into single time series of the penalization parameter λ of the

Lasso regression, we proceed as follows.

We take each of the 100 companies as a dependent variable and use the remaining

99 together with the macro variables as predictors, i.e. p = 105. This way we get

hundred regression models, which are then fitted with help of the quantile Lasso

method by Li and Zhu (2008). To record the dynamics of λ̂, we use moving windows

of size 63 observations (n = 63) which in this case represents 3 months.

Within each window algorithm designed by Li and Zhu (2008) is used to fit the

Lasso model. Then the best fit and with it also the tuning parameter λ̂ are chosen with

help of the BIC criterion (17.14). We obtain time series of tuning parameters λ̂k for

each of the hundred regressed companies. These are plotted in Fig. 17.7a together

with the average over all estimated parameters λ̂k , k = 1, . . . , 100, which we are

interested in.

Indeed as suggested in our previous simulation study, λ̂ is driven by characteristics

of an investigated model. From Fig. 17.7 we can see that its values are higher when

the residuals of the model are higher, too. There are several peaks in time series of

λ̂, which correspond to time periods of financial crises. This fact drives us to the

conclusion that the dynamics of λ̂ can serve as an indicator of a systemic risk.

17.4.3 λ̂ and Systemic Risk Measures

In the past decade, much attention has been paid to measuring of systemic risk,

particularly after the financial crisis between 2007 and 2009. It has uncovered

the cross-sectional dependencies among financial institutions to be important when

determining the risk on the market. Adrian and Brunnermeier (2016), Hautsch et al.

(2015) and Härdle et al. (2016), just to mention a few, dealt with evaluating systemic

risk according to the relevance of each financial institution itself. This inspired us to

connect the Lasso parameter λ with the systemic risk, since it depends not only on

the volatility but also on the size of model parameters and the correlation structure

of the design matrix. The latter two effects can be translated into the connectedness

of financial institutions throughout the market.

To illustrate the connection between λ̂ computed according to the method men-

tioned previously and other systemic risk measures, we plotted their common time

development starting from 3 April 2007 to 17 August 2016, see Fig. 17.8.

https://github.com/QuantLet/FRM/tree/master/FRM_download_data
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We chose VIX to show the dependency between λ̂ and volatility observed on the

financial market. The Standard & Poor’s 500 stock market index (S&P500) moves in

opposite direction of λ̂, which can also provide some information about behaviour of

λ̂ in connection to the situation on financial markets. Another systemic risk measure

is CoVaR presented by Adrian and Brunnermeier (2016) and extended by Härdle

et al. (2016), where a single index model for generalized quantile regression instead

of linear quantile regression was employed. The data for CoVaRS were downloaded

from TENET_VaR_CoVaR where only weekly data between 7 December 2007 and

4 January 2013 were available. Financial turbulence as a risk measure was proposed

by Kritzman and Li (2010). Its comovement with the time series of λ̂ is visible

from the Fig. 17.8d. A composite indicator of systemic risk (CISS) is an indicator of

contemporaneous stress in the financial system developed by Holló et al. (2012) and

computed for the area of Europe on weekly basis. Even when considering another

financial market, particularly collecting data from another countries, periods where

CISS was elevated correspond to the periods of higher λ̂ values. And, finally, credit

spread, i.e. changes in the credit spread between BAA-rated bonds and the Treasury

rate, suggested by Giglio et al. (2016), was used to relate λ̂ to systemic risk level.

From Fig. 17.8 it is visible, that λ̂ has a common trend with some of the aforemen-

tioned systemic risk measures. For CoVaRS and S&P500 index it holds, that their

time development goes in opposite direction compared to λ̂.

(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Fig. 17.7 Time series of λ̂k (blue) and other model characteristics and their respective averages

(red) when fitted to given dataset, moving windows of length 63. XFGTVP_FRM

https://github.com/QuantLet/TENET/tree/master/TENET_VaR_CoVaR
https://github.com/QuantLet/XFG3/tree/master/XFGTVP_FRM


348 W.K. Härdle et al.

(a) λ̂ and VIX (b) λ̂ and S&P500

(c) λ̂ and CoVaRS (d) λ̂ and Turbulence

(e) λ and CISS (f) λ and Credit spread

Fig. 17.8 Time series of λ̂ (red) and various systemic risk measures (blue).

XFGTVP_LambdaSysRisk

In order to show there is a comovement between λ̂ and other systemic risk mea-

sures also from the statistical point of view, we conducted several cointegration tests.

When looking at Fig. 17.8 one can see, that the time series of observed measures are

nonstationary, however, there may exist cointegration relations between them which

would make it a stationary stochastic process.

https://github.com/QuantLet/XFG3/tree/master/XFGTVP_LambdaSysRisk
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As a testing procedure we chose the Johansen (1991) test, where we used its

eigenvalue type. In Table 17.5 there are stated resulting values of test statistics and

their corresponding critical values on significance levels 10 and 5%. Variable r cor-

responds to a number of cointegration relations found between the two investigated

nonstationary time series, i.e. for the valid inference we require that r = 1.

In Table 17.5 we included 3 more systemic risk measures. We chose also CoVaR

computed with variable selection based on linear quantile regression (CoVaRL ).

Another systemic risk measure is the volatility connectedness index designed by

Diebold and Yilmaz (2014) and accessed from http://financialconnectedness.org.

Yield slope denotes changes in the slope of the yield curve corresponding to the

yield spread between the 10-year Treasury rate and the 3-month bill rate.

As we can see, many of the measures are cointegrated with the estimated Lasso

parameter λ̂. The obtained results can lead to further work, such as studying and

developing a theoretical model which might serve for prediction of the Lasso para-

meter λ. Furthermore, implementing our work into time series context might be of

interest.

Table 17.5 Cointegration of λ̂ with systemic risk measures, r is number of cointegration relations

in Johansen procedure, measures cointegrated with λ̂ are written in bold

H0 Test statistic 10 % 5 %

VIX r ≤ 1 4.80 7.52 9.24

r = 0 87.43 13.75 15.67

S&P500 r ≤ 1 7.59 10.49 12.25

r = 0 9.20 16.85 18.96

CoVaRS r ≤ 1 4.52 10.49 12.25

r = 0 50.58 16.85 18.96

CoVaRL r ≤ 1 4.59 10.49 12.25

r = 0 57.15 16.85 18.96

Turbulence r ≤ 1 8.94 10.49 12.25

r = 0 212.24 16.85 18.96

CISS r ≤ 1 6.90 10.49 12.25

r = 0 31.12 16.85 18.96

Volatility

connectedness

r ≤ 1 9.48 10.49 12.25

r = 0 10.51 16.85 18.96

Yield slope r ≤ 1 7.20 10.49 12.25

r = 0 13.63 16.85 18.96

Credit spread r ≤ 1 5.45 10.49 12.25

r = 0 42.29 16.85 18.96

http://financialconnectedness.org
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Appendix

See Tables 17.6 and 17.7.

Table 17.6 List of 100 U.S. largest financial companies

WFC Wells Fargo & Company SEIC SEI Investments Company

JPM JP Morgan Chase & Co. ETFC E*TRADE Financial

Corporation

BAC Bank of America Corporation AMG Affiliated Managers Group,

Inc.

C Citigroup Inc. RJF Raymond James Financial, Inc.

AIG American International Group,

Inc.

UNM Unum Group

GS Goldman Sachs Group, Inc.

(The)

NYCB New York Community

Bancorp, Inc.

USB U.S. Bancorp Y Alleghany Corporation

AXP American Express Company SBNY Signature Bank

MS Morgan Stanley CMA Comerica Incorporated

BLK BlackRock, Inc. AJG Arthur J. Gallagher & Co.

MET MetLife, Inc. JLL Jones Lang LaSalle

Incorporated

PNC PNC Financial Services Group,

Inc. (The)

TMK Torchmark Corporation

BK Bank Of New York Mellon

Corporation (The)

WRB W.R. Berkley Corporation

SCHW The Charles Schwab

Corporation

AFG American Financial Group, Inc.

COF Capital One Financial

Corporation

SIVB SVB Financial Group

PRU Prudential Financial, Inc. EWBC East West Bancorp, Inc.

TRV The Travelers Companies, Inc. ROL Rollins, Inc.

CME CME Group Inc. ZION Zions Bancorporation

CB Chubb Corporation (The) AIZ Assurant, Inc.

MMC Marsh & McLennan

Companies, Inc.

PACW PacWest Bancorp

BBT BB&T Corporation AFSI AmTrust Financial Services,

Inc.

ICE Intercontinental Exchange Inc. ORI Old Republic International

Corporation

STT State Street Corporation PBCT People’s United Financial, Inc.

AFL Aflac Incorporated CACC Credit Acceptance Corporation

AON Aon plc BRO Brown & Brown, Inc.

(continued)
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Table 17.6 (continued)

ALL Allstate Corporation (The) ERIE Erie Indemnity Company

BEN Franklin Resources, Inc. OZRK Bank of the Ozarks

STI SunTrust Banks, Inc. WTM White Mountains Insurance

Group, Ltd.

MCO Moody’s Corporation SNV Synovus Financial Corp.

PGR Progressive Corporation (The) ISBC Investors Bancorp, Inc.

AMP AMERIPRISE FINANCIAL

SERVICES, INC.

MKTX MarketAxess Holdings, Inc.

AMTD TD Ameritrade Holding

Corporation

LM Legg Mason, Inc.

HIG Hartford Financial Services

Group, Inc. (The)

CBSH Commerce Bancshares, Inc.

TROW T. Rowe Price Group, Inc. BOKF BOK Financial Corporation

NTRS Northern Trust Corporation EEFT Euronet Worldwide, Inc.

MTB M&T Bank Corporation DNB Dun & Bradstreet Corporation

(The)

FITB Fifth Third Bancorp WAL Western Alliance

Bancorporation

IVZ Invesco Plc EV Eaton Vance Corporation

L Loews Corporation CFR Cullen/Frost Bankers, Inc.

EFX Equifax, Inc. MORN Morningstar, Inc.

PFG Principal Financial Group Inc THG The Hanover Insurance Group,

Inc.

RF Regions Financial Corporation UMPQ Umpqua Holdings Corporation

MKL Markel Corporation CNO CNO Financial Group, Inc.

LNC Lincoln National Corporation FHN First Horizon National

Corporation

CBG CBRE Group, Inc. WBS Webster Financial Corporation

KEY KeyCorp PB Prosperity Bancshares, Inc.

NDAQ The NASDAQ OMX Group,

Inc.

PVTB PrivateBancorp, Inc.

CINF Cincinnati Financial

Corporation

SEB Seaboard Corporation

CNA CNA Financial Corporation FCNCA First Citizens BancShares, Inc.

HBAN Huntington Bancshares

Incorporated

MTG MGIC Investment Corporation
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Table 17.7 List of macro

state variables
1 VIX

2 Daily change in the 3-month Treasury maturities

3 Change in the slope of the yield curve

4 Change in the credit spread

5 Daily Dow Jones U.S. Real Estate index returns

6 Daily S&P500 index returns
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Chapter 18

Dynamic Topic Modelling

for Cryptocurrency Community Forums

M. Linton, E.G.S. Teo, E. Bommes, C.Y. Chen and Wolfgang Karl Härdle

Abstract Cryptocurrencies are more and more used in official cash flows and ex-
change of goods. Bitcoin and the underlying blockchain technology have been looked
at by big companies that are adopting and investing in this technology. The CRIX In-
dex of cryptocurrencies http://hu.berlin/CRIX indicates a wider acceptance of cryp-
tos. One reason for its prosperity certainly being a security aspect, since the under-
lying network of cryptos is decentralized. It is also unregulated and highly volatile,
making the risk assessment at any given moment difficult. In message boards one
finds a huge source of information in the form of unstructured text written by e.g.
Bitcoin developers and investors. We collect from a popular crypto currency mes-
sage board texts, user information and associated time stamps. We then provide an
indicator for fraudulent schemes. This indicator is constructed using dynamic topic
modelling, text mining and unsupervised machine learning. We study how opin-
ions and the evolution of topics are connected with big events in the cryptocurrency
universe. Furthermore, the predictive power of these techniques are investigated,
comparing the results to known events in the cryptocurrency space. We also test
hypothesis of self-fulling prophecies and herding behaviour using the results.
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18.1 Introduction

Cryptocurrencies such as Bitcoin have become more mainstream over the years with
big companies adopting and investing in the technology. Once seen to be the do-
main of technophiles and radicals, cryptocurrencies are now widely traded on many
exchanges throughout the world. Governments have also discussed the possibilities
of adopting cryptocurrencies as a means to offer digital currency. The underlying
network (called the blockchain) of cryptocurrency is decentralised, unregulated and
highly volatile, making its situation at any given moment difficult to assess. On the
other hand, an almost bottomless source of information can be found in the form
of unstructured text written by cryptocurrency users on the internet. Crowd wisdom
found in such networks can be a powerful indicator of major events affecting cryp-
tocurrencies. We attempt to take advantage of this to analyse and assign quantitative
meaning to such resources.

Early academic statistical analysis of Bitcoin includes Cheah and Fry (2015) and
Cheung et al. (2015), both looked at speculative bubbles using Bitcoin price data.
More related to this paper are works that looked at social media information and
search engine data such as Kristoufek (2013), Mai et al. (2015) and Matta et al.
(2015).

Utilizing techniques from dynamic topic modelling (DTM), text mining and ma-
chine learning, we pull data from a popular cryptocurrency forum and attempt to
detect events such as new trends in currencies, fraudulent schemes or legal and eco-
nomic issues. The DTM technique, as a type of unsupervised learning, is demanded
when the taxonomy is unclear. Some important topics may be left out if one does a
subjective judgement for taxonomy. The DTM is designed for summarizing the un-
known but important features in the world. In addition to “discover” and “quantify”
the hidden topics, the DTM is able to characterize the evolution of the hidden topics,
which may be useful for evaluating the importance and persistence. Specifically, we
collect user information and text associated with time stamps and apply unsupervised
dynamic topic modelling, studying how opinions and the evolution of topics are con-
nected with big events in the cryptocurrency universe. Furthermore, the predictive
power of these techniques are investigated, comparing the results to known events
in the cryptocurrency space. We also test hypothesis of self-fulfilling prophecies and
herding behaviour using the results. For example, Smailović et al. (2013) were able to
improve predictive power for stock markets by using sentiment derived from Twitter
feeds. Cryptocurrency discussion forums tend to be very responsive and sensitive
to events; this makes it a suitable candidate to test the predictive ability of dynamic
topic modelling.
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18.2 Data

A good, consistent and representative source of information regarding the cryp-
tocurrency community can be found on talk forums such as http://bitcointalk.org.
Acquiring the data from this platform requires deploying a web scraper to down-
load the relevant html pages from the server and extract the embedded information.
Good practices of web scraping were used to ensure there was no risk of overload-
ing servers such as waiting fifteen seconds between each request and respect for
the robots.txt protocol. Information regarding thread ids, post ids, usernames, time
stamps, post titles, post texts, quotes of other posts and links were collected and
stored in a database. There are three main discussion boards which were used in this
study, they are “Bitcoin”, “Economy” and “Alternative Cryptocurrencies”. The two
remaining discussion boards were “Other” which was discarded as it mainly deal
with non-related topics and “Local” which is also discarded as discussions are in
local languages. Each of the main discussion boards were divided into subforums
such as “Trading Discussions” and “Scam Accusations”. In total there were little
under 200 subforums, half a million different threads with over 15 million posts
(including local discussion). For the purpose of our study, we concentrate on the
Bitcoin discussion subforum.

Knowledge is power so the more information we have, the better. Aside from
this, the main motivations behind collecting these bits of information are as follows:
Thread ids and post ids are used to uniquely identify posts and the thread they come
from; usernames are used to associate each post with an agent in order to create a
graph for herding and social network analysis; time stamps are used to classify posts
into time slices for the dynamic topic model; post titles and post texts are used in
conjunction to form a document for the dynamic topic model; links and quotes are
used in order to analyse how posts relate to each other and other websites which is
useful for herding and social network analysis.

18.3 Topic Modelling

We apply topic modelling to these forums in order to model trends in the community
and to see how real life events effect the topics discussed and vice versa. The most
commonly used model to model topics in machine learning is LDA (Latent Dirichlet
Allocation) by Blei et al. (2003).

This model, however, makes the assumption that all documents modelled are
exchangeable and therefore the aspect of time is completely lost and the idea of
detecting events becomes pointless. Therefore, the model we use is the dynamic
topic model proposed by Blei and Lafferty (2006), which is a variant of LDA that
analyses documents in a set of predetermined discrete time slices and assumes topics
evolve smoothly from slice to slice with Gaussian noise.

http://bitcointalk.org
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LDA is a generative probabilistic model for text, however it has also been applied
successfully to other types of discrete data sets such as images. This model differs
from most as it is completely unsupervised, therefore removing the bottleneck of
having to acquire a trained model, and the problem it tries to solve is not classification
into topics, but rather assigning topic distributions to documents. These properties
mean that it is ideal to apply to large quantities of unstructured text where it would be
impossible to obtain reliable training data to produce a model and simply classifying
documents into topics would produce confusing and unrealistic results. Bao and
Datta (2014) apply the LDA method to extract the risk types (meaningful topics) in
Security Exchange Commission 10-K forms, and find many plausible and meaningful
risk types that have been left out in a supervised learning scheme proposed by Huang
and Li (2011). The inferred topics from a supervised learning only cover 78% of topic
pools.

The Dirichlet distribution is defined on a (k − 1) dimensional simplex

�k =

{

q ∈ R
k :

k
∑

i=1
qi = 1, qi ≥ o, i − 1, 2, . . . , k

}

. (18.1)

It can be thought of as a distribution of random probability mass/density functions
(pdf). An excellent example based introduction can be found in Frigyik et al. (2010).

Definition 18.1 Let Q be a real value in �k and suppose that α ∈ R
k, αi > 0

and define α0
def
= αT 1. Then Q has a Dir(α) distribution with pdf f (q;α) =

Ŵ(α0)
∏

i=1

Ŵ(αi )

k
∏

i=1
q

αi −1
i .

Density plots are given in Fig. 18.1 for different α. Given a document with a certain
word distribution, the task is obviously to determine α from the set of documents.

The gamma function is a generalization of the factorial function, Ŵ(s) = sŴ(s −
1) with Ŵ(1) = 1. The mean of a Dir(α) random variable is E Q = α/α0. Note that
α determines the “location” of words in documents, a “small” α creates sharp peaks
on defined locations. You may think of the document that has been written by the
poet in the flim “Shining”, in the described Dir(α) framework, there is just one “big”
peak of the words at “all work and no play makes Jack a dull boy”. With just k = 2
words in a document the Dir(α) reduces to the Beta distribution with pdf

f (x; a, b) =
Ŵ(a + b)

Ŵ(a) + Ŵ(b)
xa−1(1 − x)b−1. (18.2)

For α = (a, b)T with Q = (X, 1 − X) ∼ Dir(α) for X ∼ Beta(a, b).
In a Bayesian context, employed here entirely for numerical and computational

reasons, one finds that the multinomial distribution with pdf
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Fig. 18.1 Plots of sample pmfs drawn from Dirichlet distributions for various values of α.
XFGtdmDirichlet

f (x; n, q) =
n!

k
∏

i=1
xi !

k
∏

i=1
q

xi

i , x, q ∈ R
k (18.3)

is a so called conjugate prior.
As the binomial distribution (for k = 2) is the conjugate prior for the Beta dis-

tribution, one finds that if (X | q) ∼ MultR(n, q) and Q ∼ Dir(α), then (Q | X =
x) ∼ Dir(α + x). Again we refer for a proof of this to Frigyik et al. (2010).

The basic idea of a static Topic Model (TM) is to take a document as a sample
of words generated by a Dir(θ) distribution, where θ represents the topic. More
precisely it is assumed that a document is generated via the following imaginary
random process:

1. For each topic k, draw a distribution over words �βk ∼ Dirv(η)

2a. For each document d, draw topic proportions θd from over the (k − 1) simplex
2b. For each word Wd,n within the document:
i. Draw a topic assignment Zd,n ∼ Mult (�θd), Zd,n ∈ {1, . . . , k}
ii. Draw a word Wd,n ∼ Mult ( �βzd,n

), Wd,n ∈ {1, . . . , V }

https://github.com/QuantLet/XFG3/blob/master/XFGdtmDirichlet
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Table 18.1 Most frequent words used in NASDAQ articles

Word Freq. (in k) Freq. for top 5 sectors

Free 649 10

Well 238 9

Gold 235 1

Best 207 9

Fool 200 5

Strong 196 5

Like 172 5

Top 167 3

Better 162 0

Motley 152 2

βz is a vector of β, one for each topic. β is a matrix of word|topic parameters.
The number of topics is assumed known beforehand though determining the num-

ber of topics (clusters) is rather challenging in unsupervised learning. One can easily
find some methods being proposed for estimating the number of topics automatically,
but one has to be aware of several restrictions. Firstly, Wallach et al. (2010) find that
the estimated numbers of topics are strongly model-dependent. Besides, merely us-
ing fit statistics such as perplexity may be problematic due to a negative relation
between the best fitted model and the substantive fit (Chang et al. 2009). To balance
the substantive fit and statistical fit, Bao and Datta (2014) propose strategic proce-
dures - Firstly, employing statistical fit to reduce the set of candidate models with
different numbers of topics. Relying on the predefined perplexity, one can optimize
the predictive power of model. In their case, the numbers can be chosen as 30, 40 and
50 in terms of perplexity and a converge in the range [30, 50] is shown. Secondly, the
substantive fit for semantic coherence is compared among the competing models.
To be specific, the model precision in word intrusion task is evaluated. It’s so called
“semantic validation”. The semantic coherence of topics perhaps is the most useful
indicator w.r.t the quality of topics, reflecting to how well the topic matches a human
concept through a list of keywords. The number, 30, is therefore chosen due to its
best semantic coherence performance.

Let us provide an example that sheds some light on this generation mechanism.
Suppose that the “word universe” corresponds to the most frequent words in the
NASDAQ analysis study by Zhang et al. (2016) and Bommes et al. (2017), as given
in Table 18.1.

The idea is now that different topics have different word distribution as given by
Mult (βz). Suppose there were k = 2 topics/sectors, corresponding to “finance” and
“IT” and further suppose that the distribution of words over topics are generated by
Dir(θ). To be precise, for k = 2, the Dirichlet distribution boils down to a Beta(θ)

distribution. It could be the case that for the topic “finance”, the third most frequent
word “gold” is more concentrated. Whereas, for the topic “IT”, concentration would
be more around the words “fool” and “motley”. See Fig. 18.2 below for an illustration
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Fig. 18.2 Distribution of words by topic ( �β1 and �β2). XFGdtmWDistr

that shows the random outcomes �β1 and �β2. In such as scenario, we would prefer a
different word distribution for each these topics.

Step 2bi. now refers to the random mechanism that a word to be written down is
drawn from �β1 or �β2. Suppose that the first has to be drawn from �β1 since Z1,1 = 1,

for d = 1 (1st document) and n = 1 (first word). So a random outcome as described
in Step 2bii. could be the word W1,1 = “gold” (the word with the second highest
frequency in �β1. For the next word (n = 2), Z1,2 could take the value 1 again and now
W1,2 = “strong” could be the outcome. A third word could be via Z1,3 = 2, W1,3 =
“free”, and so on. The task of TM is now to invert this mechanism and calibrate the
observed documents to the parameters of the Dir and Mult distributions.

The problem of static TM though is that there is no timeline, an issue that is of
course necessary for the questions we would like to study here. The dynamic topic
model, on the other hand models each time slice with LDA, but its parameters β and
α are chained together in a state space model which evolves with Gaussian noise:

βt,k |βt−1,k ∼ N (βt−1,k, σ2I ) (18.4)

αt,k |αt−1,k ∼ N (αt−1,k, δ2I ) (18.5)

Like this we get a smooth evolution of topics from slice to slice. The state space
diagram describes the model well.

Due to the nonconjugacy of the Gaussian and multinomial distributions, exact
inference is intractable so the authors present two methods for approximate infer-
ence using variational methods: variational Kalman filtering and variational wavelet
regression (Fig. 18.3).

https://github.com/QuantLet/XFG3/blob/master/XFGdtmWDistr
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Fig. 18.3 State space diagram of the dynamic topic model

18.4 Preprocessing

Preprocessing steps make a big difference to the outcome of topic models. Especially
when working in the domain of a forum where thousands of users post everyday, most
likely without looking words up in the dictionary or worrying about the correctness
of their grammar, we will find many spelling mistakes, slang and proper names that
aren’t going to be simple to handle. Therefore, a natural approach to preparing the data
appropriately would be to use a POS tagging algorithm coupled with a tokeniser to
infer from context what words have which function. Stop words will appear multiple
times in each sentence without conveying any meaning and therefore are removed
and so are functional words, verbs, adjectives and adverbs leaving us only with
nouns, proper nouns and foreign words. In this way we have all the most important
information from each post without losing out on non-standard vocabularies that
arise in the community. To combat typos, the words occurring in fewer than 10
documents were removed and to get rid of generic words, the words appearing in
more than 10% of the documents were also removed. In the end, from a dictionary
of 500,000 words, we obtained one of 10,000 meaningful words. Once we had the
cleaned text, the preparation for the dynamic topic model (code by Sean M. Gerrish)
consisted of converting the corpus to a sparse matrix representation whereby each
line represented a document and was in the following form:

N_unique_words word_id : word_count word_id : word_count.....

Also a file containing information about the time slices was prepared of the fol-
lowing format:

N_t ime_slices

N_docs_slice_1
N_docs_slice_2
...
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Where N denotes number of documents in the corresponding slice. On top of
these necessary files, for each corpus a file containing metadata, a dictionary file and
a vocabulary file were also produced. The metadata file contains a header describing
the fields and then each line represents a document with the following pieces of
information: thread id, post id, date time, username, post text, post quotes and post
links. This will come in handy for information retrieval and herding analysis. The
dictionary file is a python dictionary object which maps ids to words and contains
word count information. The vocabulary file is a human readable file where each line
is a word from the dictionary and its position maps to its key.

18.5 Trends

As mentioned in the introduction, the data acquired from the forum was divided
into subforums. The main subforums by posting volume are: ‘Economics’, ‘Bitcoin
Discussion’, ‘Altcoin Discussion’ and ‘Speculation’. The dynamic topic model was
run on these subforums and in addition also with the subforum ’Scam Accusations’.
The commonly used 50/k heuristic by Griffiths and Steyvers (2004) for the alpha
parameter was chosen and a varying number of topics were modelled. All models
were run with weekly data over the 2009/11/22 (when the forum was created) to
2016/08/06 period.

Each topic in the hidden structure is represented as a distribution over words and
therefore the most human interpretable way of understanding what a topic is about is
to look at the most probable words in each distribution. An example representation
can be found in Table 18.2 in which some topics are shown for the last time slice
in the Bitcoin Discussion subboard. Each time slice will have it’s own similar rep-
resentation. While the words may change over time as new trends emerge and fall,
the topic will intuitively remain the same. For example, in the table shown we can
see that topic 50 is about Bitcoin mining, but the top words in the first time slice are
rather different even though we would still assign the same topic label to it; cpu, dif-
ficulty, proof, mining, adjustment, proof-of-work, power, attack were the top words
in 2009 in topic 50, demonstrating how Bitcoin mining has evolved to cope with
the increasing mining difficulty. In fact we can directly compare different mining
hardware and how they were relevant over different periods of time in Fig. 18.4.

As we can see, in topic 50 the word CPU was very prominent initially and all the
others were non-existent. Then when the network grew to an extent that the quantity
of Bitcoins produced by CPU mining were worth less than what it cost to operate,
GPU mining came into play. Another stride in mining hardware was the usage of
application specific integrated circuits (asic). The first asic mining hardware project
called the ‘Avalon Project’ was announced in 2012 on the forum and the peak in the
third plot in January 2013 corresponds to the release of their first chip. In the fourth
plot we see the timeline of Antminer, a brand of asics considered to be the current
top of the line. As expected we can see a positive trend over the last years with peaks
in discussion around releases of new models.
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Table 18.2 Notable topics from 50 topic model on Bitcoin Discussion subforum from 2016/07/31
to 2016/08/06

Topic
num-
ber

Most probable words

1 Value, gold, bar, dollar, rate, demand, interest, asset

2 Business, casino, house, trust, gambling, run, strategy, player

5 Government, control, criminal, law, study, regulation, state, rule

7 Use, service, option, cash, good, spend, fiat, convert

12 Account, payment, fund, card, paypal, party, merchant, credit

18 Score, online, pay, shop, bill, product, purchase, phone

20 Wallet, key, paper, computer, storage, code, data, secure

23 Price, trade, market, trader, drop, volume, sell, stock

24 Trading, term, hold, buy, pump, dump, earn, gamble

30 Exchange, bitfinex, lesson, cryptocurrency, crash, platform, altcoins, popularity

32 Investment, risk, invest, aim, impact, salary, making, way

33 Year, altcoins, end, today, adoption, prediction, happen, trend

35 Transaction, block, fee, chain, confirmation, hour, minute, hardfork

38 Altcoin, company, loss, hack, scam, hacker, scammer, road

42 Bank, system, security, fiat, banking, role, function, institution

45 Ethereum, split, advantage, issue, side, change, fork, core

48 Forum, post, topic, member, bitcointalk, thread, index, php

50 Mining, miner, network, power, pool, cost, reward, electricity

Fig. 18.4 Comparison of word evolution for different mining technologies 22/11/2009–06/08/2016.
XFGdtmMining

https://github.com/QuantLet/XFG3/blob/master/XFGdtmMining
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As an up and coming and fast growing technology, Bitcoin has had its fair share of
issues. In fact, due to its unregulated nature and uncertainty of legality or legitimacy
as currency in most corners of the world, the cryptocurrency history is laden with
high profile hacks, ponzi schemes and scam websites. Many of these go undetected
for months until a certain point where gradually complaints start to stack up and a
realisation or confirmation of the events takes place.

Probably the biggest example of such an event in Bitcoin history is the insolvency
of the MtGox Bitcoin exchange in 2014. MtGox originally started off in 2007 as a
platform for trading Magic: The Gathering Online trading cards which is where it
got its name (Magic: The Gathering eXchange). In 2010, however, it was rebranded
as one of the first exchanges where people could buy and sell Bitcoins. The exchange
grew gradually and watched the price of Bitcoin go from less than 0.1 USD in 2010 to
parity with the US dollar in 2011. At this point however, the owner of MtGox decided
to sell the exchange in order to dedicate himself to ‘other projects’. An internal email
dating back from after the sale of the exchange revealed that already 80,000 Bitcoins
(worth over $60,000 at the time) had already been missing before any of the public
fiascos had occurred and had never been recovered. However, it was only three
months later that a major event occurred. 60,000 accounts were exposed publicly
and a compromised MtGox auditors account was used to create huge sell orders and
crash the Bitcoin price from $17.51 to $0.01. As a result of this event the site was
down for a week and many of the exposed accounts were used to steal coins from
other bitcoin services due to password reuse. However, unlike many other Bitcoin
services, MtGox managed to recover its reputation and became the largest Bitcoin
exchange, handling 70% of all trades worldwide. Fast forwarding to 2013, when their
real problems began, in June withdrawals of US dollars were suspended and even
though a couple of weeks later in July it had been announced that withdrawals had
fully resumed, as of September few withdrawals had successfully been completed.
Complaints piled up over the next few months and on 7 February 2014 all Bitcoin
withdrawals had been suspended for good. On the 24th of February all activities had
halted, the website went offline and a leaked internal crisis management document
claimed that 744,408 Bitcoins (worth almost half a billion dollars) had been lost and
the company was insolvent.

As we can see, MtGox has had a roller coaster of a past with repeated security
issues and poor management and has therefore been a major topic of discussion
among users of the main Bitcoin forum. The main topics in which MtGox arises are
predictively topic 23 about Bitcoin trading and markets and topic 38 about scams
and hacks. Naturally the word/topic probability plot in Fig. 18.5 reflects this and we
can see peaks corresponding to the main events. In topic 38 there is a clear peak in
mid 2011 during the first hack and in February 2014 also. Meanwhile in topic 23
there is a gradual peak starting in mid 2013 when the transaction issues first occurred
and trailing off at the same time MtGox starts to gain momentum in topic 38.

MtGox is only one example of the many scams and hacks resulting in huge losses
that have occurred over the years and it is because of this that cryptocurrencies get
a bad rap. Many services have come and gone, but none quite so spectacularly as
MtGox.
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Fig. 18.5 MtGox word evolution 22/11/2009–06/08/2016. XFGdtmMtGox

Currency exchanges, mining hardware manufacturers, technology startups, min-
ing pools and many other cryptocurrency related services have almost infallibly been
victims of hacks and inside jobs, revealed as ponzi schemes, virus promoters etc. As
soon as such events occur or are discovered, we would expect there to be gradual
buildups or sudden explosions of discussion on the forum depending on the situation.
In general, we would expect any event in the Bitcoin universe to be discussed on the
forum and therefore be a part of the inferred generative process of the topic structure.

We want to evaluate the effectiveness of topic models in discerning these types
of events. In our MtGox example, the word probabilities over time are characterised
by relatively flat probabilities in general and spikes at the time of events. We can
take advantage of this structure and hypothesise that it extends to other events. First
we must validate this against other events. A curated list of Bitcoin services which
have been victims of hacks or perpetrators of scams have been compiled over the
years in a thread on http://bitcointalk.org (https://bitcointalk.org/index.php?topic=
576337.0). This list will form our basis for event discovery validation. This could be
done for other types of events however the most complete information can be found
regarding scam/hack events since they are of relevance and interest to all involved
with Bitcoin. We look at the topic prominence for this set of words and see if the
model correctly partitions them in a scam/hack topic.

https://github.com/QuantLet/XFG3/blob/master/XFGdtmMtGox
http://bitcointalk.org
https://bitcointalk.org/index.php?topic=576337.0
https://bitcointalk.org/index.php?topic=576337.0
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18.6 Choosing K and Analysis

The choice of the number of topics has been an issue ever since topic models were
first introduced in 2003. For this particular study, we used the Umass coherence
metric by Mimno et al. (2011) to evaluate which number of topics was optimal. This
method involves taking the top N words for each topic and taking measures of their
occurrences and co-occurrences in the corpus. Formally it is defined as:

N−1
∑

i=1

N
∑

j=i+1

D(wi , w j ) + ǫ

D(wi )
(18.6)

where wi and w j are the i th and j th ranked words in a given topic respectively and
D(w) is the number of documents in which word w occurs. We set N = 20.

It has been shown to correlate well with human interpretations of what constitutes
a coherent topic. In addition, the metric does not require external validation, sim-
plifying the procedure and making it more versatile. To make the repeated training
of models viable, we calculated Umass coherence on a subsample of 100 weeks of
data. In Table 18.3 we can see the results of the coherence evaluation. We have taken
the arithmetic mean and standard deviation of the output values over the 100 chained
LDA models; higher values mean more human understandable topics. Clearly our
model is optimal when we choose 30 for the k parameter since on average the topics
are more coherent and stable over time. We also observe that lower numbers of k

are more coherent than higher values, but are also less stable over time. While this
method does a good job at finding the number of topics more attuned to human
intuition, we would also like to study how this effects event detection.

The generative process described now gives us a multi-layer interpretation of the
data. We have K topics with D documents and W words. Each topic can be described
by a vector of length W of word/topic probabilities. Each document can be described
by a vector of length K of topic/document probabilities. Each topic changes over
each of the T time slices and therefore each topic/document distribution acquires a
different meaning depending on where it is in the timeline.

Say we have a particular word w in our vocabulary we would like to learn some-
thing about. The best way to do this is to look at the word probabilities over a certain

Table 18.3 Topic coherence statistics

Number of topics k μ σ

10 –185.74 66.62

20 –204.28 65.57

30 –176.46 52.80

40 –202.10 68.99

50 –205.83 63.17
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time slice in the topics. We can call this concept the word prominence and we would
like to maximize this in order to find the most relevant topic.

arg max
k

1

t j − ti

t j
∑

t=ti

p(w|k, ti ) (18.7)

Once we have found this topic (or topics if we want to find several), looking at the
topics top words will allow us to discover in which context this term is discussed the
most. We can also plot the evolution of the probability over time of this particular
word in this topic and see when it was most used, when it came into use or passed
out of use. Quite often words with same spelling but different meaning (homonyms)
occur or words that can be discussed in different contexts (for example price could
be present in a stock market topic or in a groceries topic). Whereas usually it wouldn’t
be a simple task to discern these words, topic models account for them very nicely
and provide a useful perspective.

In addition to analysing the word/topic distribution we can also take a look at the
topic/document distributions and determine in which time slice which topics were
‘hotter’ and which were ‘colder’ and identify trend starters. The hotter a topic k at
time t , the more documents are going to exhibit higher mixtures of the topic. The
inverse is true for colder topics. We can define the topic temperature as follows by
Hall et al. (2008):

∑

d:td=t

p(k|d)p(d|t) =
1

Dt

∑

d:td=t

p(k|d) (18.8)

where Dt is the number of documents in time slice t and td is the date document d

was written.

18.7 Detection

From the list of events acquired from the forum, all those solely concerning individ-
uals or causing losses of fewer than 1000 Bitcoins were removed. As a consequence
of this procedure, we were left with 33 different Bitcoin services (and 37 differ-
ent events). For each word we determine which topics the word achieves a topic
prominence larger than a certain threshold. Typically, any given word will only
appear in a handful of topics and most in just 1 or 2. Even though a certain topic
may not have anything to do with a chosen word, topic models have the property that
the probability of a word occurring in a topic is never 0, albeit negligible. Therefore
we use a very low empirically tested threshold to determine which topics to test
and discard the noisy ones. Then we analyse the topic prominence of the words
conditioned on topics through time and determine an event occurring to be when its
upper control limit is breached. I.e. when:
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Table 18.4 Events in chronological order, an asterisk means undetected in the 50 topic model

Event Dates Topic

Ubitex* (1,138b) 2011-04 to 2011-07 None

Allinvain 2011-06-13 23

MtGox 2011-06-19 23

Mybitcoin 2011-06-20, 2011-07 23

Bitomat 2011-07-26 23

Mooncoin 2011-09-11 23

Bitscalper 2012-01 to 2012-03 23

Linode 2012-03-01 23

Betcoin* (3,171b) 2012-04-11 None

Bitcoinica 2012-04-12, 2012-07-13 23

Btc-e 2012-07-13 12

Kronos 2012-08 23

Bitcoin Savings and Trusts 2012-08-28 23

Bitfloor 2012-09-04 23

Btcguild* (1,254b) 2013-03-10 None

OkPay (main victim of 2013 Fork)2013-03-11 30

Ziggap* (1,708b) 2013-02 to 2013-04 None

Just-Dice 2013-07-15 23

Basic-Mining* (2,131b) 2013-10 None

Silkroad2 2013-10-02 23

Vircurex* (1,454b) 2013-10-05 None

GBL 2013-10-26 12

Bips* (1,294b) 2013-11-17 None

Picostocks* (5,896b) 2013-11-29 None

MtGox 2014-02-24 23

Flexcoin 2014-03-02 23

Cryptorush 2014-03-11 23

Mintpal 2014-10-14 23

Silkroad2 2014-11-06 23

Bitstamp 2015-01-04 23, 25

Bter 2015-02-14 23

Cryptsy 2016-01-01 23

Shapeshift 2016-04 23

Gatecoin* 2016-05-13 None

Bitfinex 2016-08-03 12
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Fig. 18.6 Event partitioning over varying k parameters, 10 topics (no filling), 30 topics (dashed

filling), 50 topics model (densely dashed filling). XFGdtmEvents

p(w|k, ti+1) > μ(p(w|k, t1:i )) + 3 σ(p(w|k, t1:i )) (18.9)

Table 18.4 contains the information regarding our events and the dates they oc-
curred. We compared these events against those detected in our model using the
method described and have marked with an asterisk those that went undetected.

Most of the events causing losses of circa 2000 Bitcoins and under (indicated)
went undetected and almost all of those causing larger losses were identified. As
hypothesized in the previous section, the large majority of these events were found
to be in a single topic (topic 38), demonstrating the effectiveness of topic models in
discriminating event types and providing an indicator for future such events.

This event detection algorithm was also run on our 10, 30 and 50 topic models.
For the varying number k we can see what effect it has on our event distribution
in Fig. 18.6. With the number of topics considered to be most coherent, our events
are grouped mainly into a single topic. On the other hand, the less coherent topics
are composed of many junk topics in the higher k case, or more general topics in
the lower, therefore resulting in inconsistency in the experiment. A lower k results
in fewer detections as our topics will each be less relevant and a higher k results in
many junk topics and detections across more topics.

In addition, for each event we can observe the impact it has on the topic structure
by measuring the deviation of the topic temperature from the mean at the time
in which it occurred. Since our timeline and number of time slices is large and we
are using a symmetric Dirichlet prior, our topics are going to be rather general and
fixed through time and the change in temperature between different times won’t be
significant. However, one can note in Fig. 18.7 that all values are positive at the times
the events occurred and appreciate the event hierarchy that follows.

https://github.com/QuantLet/XFG3/blob/master/XFGdtmEvents
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Fig. 18.7 Plot of ordered topic temperatures at time of event with k being the event topic and t

being the time of the event XFGdtmTemperature

18.8 Conclusion

In the above piece of work we have introduced and explained topic models. A dataset
has been created from user posts on http://bitcointalk.org by using web scraping; then
text-mining techniques were used to prepare the data for dynamic topic modelling and
consequently a walk through of all the steps for constructing such a model has been
provided. We have presented a study and exploration of the popular cryptocurrency
forum in this framework and employed an event detection technique to capture the
effect of high profile scamming and hacking on the community. The number of topics
parameter has been shown to be optimal for event detection when it accords with a
measure of topic coherence. In addition, the constructed model partitions almost all
of the events above a certain severity in a single topic.
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